Report Prepared for Harrington Custodian Pty Ltd.

ratio:

16 April 2021

Traffic Impact Assessment Proposed Mixed-Use

Development

Fairfield Forum 8-36 Station Street, Fairfield

traffi • B pact

Prepared for:

Harrington Custodian Pty Ltd. Our reference 15881T-REP05-F01

Version	Date		Reason for Issue	Prepared By	Checked By
F01	16.04.2021		Preliminary	S.Lewis B.Eng	P. Malley ^{B.Eng}
Discrete Dette Y:\15501-16000\15881T - Fairfield					
Directory Path For			um\Work\Reports\15881T-REP05-F01.docx		

ratio:consultants pty ltd

This work is copyright. Apart from any use as permitted under Copyright Act 1968, no part may be reproduced without written permission of **ratio:**consultants pty ltd.

Disclaimer: neither **ratio**:consultants pty ltd nor any member or employee of **ratio**:consultants pty ltd takes responsibility in anyway whatsoever to any person or organisation (other than that for which this report is being prepared) in respect of the information set out in this report, including any errors or omissions therein. **ratio**:consultants pty ltd is not liable for errors in plans, specifications, documentation or other advice not prepared or designed by **ratio**:consultants pty ltd.

-
Û
Ť
0
Ŭ
0
U
Π

Chapter / Section	Page No.
1 Introduction	1:
2 Background	& History:8
3 Existing Cor	nditions:9
3.1 Location and	l Environment9
3.2 Surrounding	Land Uses
3.3 Existing Acce	ess Arrangements11
3.4 Road Networ	
3.5 Traffic Volum	15 Data
3.6 I rattic volum	16 Calibration
3.7 Existing Intel	section Operation
3.0 Peuestriari C	or intectivity 3/
3.10 Public Transi	oort Opportunities 36
5.101 ublic 114115	
4 The Proposa	ป:
4.1 Developmen	t Schedule
4.2 Vehicle and F	Pedestrian Access40
5 Traffic Asse	ssment:
5.1 Traffic Gener	ation
5.2 Traffic Distrik	oution
5.3 Growth (Base	e Case)
5.4 Future Volun	nes62
5.5 External Inte	rsection Operations66
5.6 Road Networ	rk Improvements76
5.7 Ware Street.	
6 Car Parking:	
6.1 DCP Parking	Rates
6.2 Parking Limit	tation Opportunities85
7 Bicycle Park	ing:87
7.1 DCP Bicycle	Parking Requirements 87
8 Conclusion:	

Appendices:

Appendix A	Existing Conditions Traffic Volumes:
Appendix B	Existing Conditions SIDRA Results :
Appendix C	Base Case SIDRA Assessment :
Appendix D	Future Conditions SIDRA Assessment :
Appendix E	Modified Intersections SIDRA ASSESSMENT :
Appendix F	Concept Intersection Plans :

List of tables:

Table 3.1: Dates of Sourced Data.....16 Table 3.2: Town Centre Intersection Peak Hour Volumes Growth Rates 16 Table 3.4: Ratings of Degree of Saturation23 Table 3.5: Existing Weekday Peak Conditions, Nelson Street/Station Table 3.6: Existing Weekday Peak Conditions, Nelson Street/Ware Street Table 3.7: Existing Weekday Peak Conditions, Nelson Street/Smart Street Table 3.8: Existing Weekday Peak Conditions, Smart Street/Smart Lane Table 3.9: Existing Weekday Peak Conditions, Nelson Street/Horsley Table 3.10: Existing Weekday Peak Conditions, Sackville Street/Station Table 3.11: Existing Weekday Peak Conditions, Cunninghame Table 3.11: Existing Weekday Peak Conditions, Polding Street/Horsley Table 3.12: Existing Saturday Peak Conditions, Nelson Street/ Station Table 3.13: Existing Saturday Peak Conditions, Nelson Street/Ware Street Table 3.14: Existing Saturday Peak Conditions, Nelson Street/Smart Table 3.15: Existing Saturday Peak Conditions, Smart Street/Smart Lane Table 3.16: Existing Saturday Peak Conditions, Nelson Street/Horsley Table 3.17: Existing Saturday Peak Conditions, Sackville Street/Station Table 3.11: Existing Weekday Peak Conditions, Cunninghame Table 3.11: Existing Weekday Peak Conditions, Polding Street/Horsley Table 5.1: Residential Traffic Generation......43 Table 5.4: Trip Purpose Data - Residential......44 Table 5.5: Base Case Weekday Peak Conditions, Nelson Street/Station Street......54 Table 5.6: Base Case Weekday Peak Conditions, Nelson Street/Ware Street......54 Table 5.7: Base Case Weekday Peak Conditions, Nelson Street/Smart Table 5.8: Base Case Weekday Peak Conditions, Smart Street/Smart Lane Table 5.9: Base Case Weekday Peak Conditions, Nelson Street/Horsley Table 5.10: Base Case Weekday Peak Conditions, Sackville Street/Station Table 3.11: Existing Weekday Peak Conditions, Cunninghame

Table 3.11: Existing Weekday Peak Conditions, Polding Street/Horsley Table 5.11: Base Case Saturday Peak Conditions, Nelson Street/ Station Table 5.12: Base Case Saturday Peak Conditions, Nelson Street/Ware Table 5.13: Base Case Saturday Peak Conditions, Nelson Street/Smart Table 5.14: Base Case Saturday Peak Conditions, Smart Street/Smart Table 5.15: Base Case Saturday Peak Conditions, Nelson Street/Horsley Drive/Court Road60 Table 5.16: Base Case Saturday Peak Conditions, Sackville Street/Station Table 3.11: Base Case Weekday Peak Conditions, Cunninghame Street/Horsley Drive61 Table 3.11: Base Case Weekday Peak Conditions, Polding Street/Horsley Table 5.17: Future Conditions Weekday Peak Conditions, Nelson Table 5.18: Future Conditions Weekday Peak Conditions, Nelson Table 5.19: Future Conditions Weekday Peak Conditions, Nelson Table 5.20: Future Conditions Weekday Peak Conditions, Smart Table 5.21: Future Conditions Weekday Peak Conditions, Nelson Table 5.22: Future Conditions Weekday Peak Conditions, Sackville 3.11: Future Weekday Peak Conditions, Cunninghame Table Table 3.11: Future Weekday Peak Conditions, Polding Street/Horsley Table 5.23: Future Conditions Saturday Peak Conditions, Nelson Street/ Station Street/Barbara Street72 Table 5.24: Future Conditions Saturday Peak Conditions, Nelson Street/Ware Street.....72 Table 5.25: Future Conditions Saturday Peak Conditions, Nelson Street/Smart Street73 Table 5.26: Future Conditions Saturday Peak Conditions, Smart Street/Smart Lane......73 Table 5.27: Future Conditions Saturday Peak Conditions, Nelson Street/Horsley Drive/Court Road74 Table 5.28: Future Saturday Peak Conditions, Sackville Street/Station Street.....74 3.11: Future Saturday Peak Conditions, Cunninghame Table Street/Horsley Drive75 Table 3.11: Future Saturday Peak Conditions, Polding Street/Horsley Drive Table 5.29: Future Conditions Weekday Peak Conditions, Modified Sackville Street/Station Street77 Table 5.30: Future Conditions Saturday Peak Conditions, Modified Table 5.40: Future Weekday Peak Conditions, Modified Polding Table 5.41: Future Saturday Peak Conditions, Modified Polding

Table	5.31:	Future	Conditions	Weekday	Peak	Conditions,	Ware
Street/	Cunnin	ighame S	treet				82
Table	5.32:	Future	Conditions	Saturday	Peak	Conditions,	Ware
Street/	Cunnin	ighame S	treet				82
Table	5.33:	Future	Conditions	Weekday	Peak	Conditions,	Ware
Street/	Station	Street					83
Table	5.34:	Future	Conditions	Weekday	Peak	Conditions,	Ware
Street/	Station	Street					83
Table 6	5.1: DCF	> Minimu	m Car Parkin	ig Rates			84
Table 6	5.2: DCF	> Minimu	m Car Parkin	ig Allocation	า		84
Table 6	5.3: ABS	S Census	2016 Apartm	nent Averag	ge Car (Ownership Da	ta85
Table 7	7.1: DCF	Minimu	m Car Parkin	ig Rates			87
Table 7	7.2: DCF	⊃ Minimu	m Bicycle Pa	rking Alloca	ation		87

List of Figures:

Figure 3-1: Site Locality Plan	9
Figure 3-2: Aerial Photograph of Subject Site and Surrounds	9
Figure 3-3: Map of Key Site Locations	11
Figure 3-4: Existing Site Access Locations	12
Figure 3-5: Local Road Network	12
Figure 3-6: Cunninghame Street Typical Configuration	13
Figure 3-7: Station Street Typical Configuration	13
Figure 3-8: Ware Street Typical Configuration	14
Figure 3-9: Key Intersections	15
Figure 3-10: RMS Traffic Monitor Daily Traffic Volume Decrease	17
Figure 3-11: AM Peak Hour Turning Movements	18
Figure 3-12: PM Peak Hour Turning Movements	19
Figure 3-13: Saturday Peak Hour Turning Movements	20
Figure 3-14: SIDRA Network Layout	
Figure 3-15: SIDRA Intersection Layout, Sackville Street/Station Str	eet 23
Figure 3-16: Walking distance from the centre of Fairfield	
Figure 3-17: Cycling Network	34
Figure 3-18: Cycling distance from the centre of Fairfield	35
Figure 3-19: Local Public Transport	
Figure 3-20: Public Transport Network	37
Figure 4-1. Proposed Sile Layout	
Figure 4-2. Sile Access Locations	4⊥ /,1
Figure 5.1: Adopted Traffic Distribution	414 مار
Figure 5-1. Adopted Hame Distribution	40 40
Figure 5-2: Site-Generated PM Peak Hour Volumes	40 ルフ
Figure 5-3. Site-Generated Saturday Peak Hour Volumes	7 ب 1/18
Figure 5-5: AM Peak Hour Base Case Volumes	
Figure 5-6: PM Peak Hour Base Case Volumes	51 52
Figure 5-7: Saturday Peak Hour Base Case Volumes	
Figure 5-8: Future AM Peak Hour Volumes	
Figure 5-9: Future PM Peak Hour Volumes	60
Figure 5-10: Future Saturday Peak Hour Volumes	
Figure 5-11: Proposed Intersection Layout, Station Street/Sackville	Street
Figure 5-12: Proposed kerbside parking converted to through	1 lane
Station Street	76
Figure 5-13: Proposed Intersection Lavout, Polding Street/The H	lorslev
Drive	79
Figure 5-14: Proposed Ware Street Extension to Station Street	81

Ratio Consultants have been commissioned by Harrington Custodian Pty Ltd. (the applicant) to assess the traffic and parking implications of the proposed redevelopment of the Fairfield shopping centre located at 8-36 Station Street in Fairfield.

The proposal seeks to redevelop the existing retail centre whilst providing a generous public open space area and introducing a number of residential buildings.

The proposed Master Plan seeks to revitalise the northern extent of the Fairfield Town Centre into a high amenity area.

This report has been prepared as part of the site specific Development Control Plan (DCP) that will apply to the site. This report therefore addresses the anticipated traffic impacts of the development and the associated intersection operation outcomes.

During the course of preparing this assessment the subject site and its surrounds have been inspected, plans of the development reviewed and historical traffic data sourced and analysed. The site has been the subject of a number of investigations that have been undertaken as part of a Gateway approval process, including the assessment of potential traffic generation and car parking requirements.

An initial Traffic and Transport Review was prepared by Ratio in February 2019 and submitted to Fairfield City Council as part of the Master Plan documentation. In response to Council comments, a refined and amended traffic and transport review was prepared and issued December 2019 that included additional discussion of the proposal's traffic generation and traffic distribution.

Subsequent to submission of updated documentation, a Gateway decision was issued by the Department of Planning, Industry and Environment on 31 March 2020. This included a Condition that the proposal "prepare a transport study to assess and identify the impact of the planning proposal on the surrounding road network and clarify whether there is a need for infrastructure improvements to accommodate the additional traffic generated by the planning proposal"

Initial traffic impact assessments of the proposal were prepared in 2020, and, based on the restrictions put in place as part of the Covid-19 pandemic, there was been an associated reduction in traffic volumes on the road network. Additionally, the patterns of the traffic had altered with many people working from home which has reduced commuter traffic, and many people have adopted a greater utilisation of online shopping which has reduced traditional shopping traffic. As such, the collection of traffic volume data within the Fairfield Town Centre at this time would have likely yield atypical results.

Having regard to this limitation, historical traffic volume data has been sourced for the town centre and used as the basis of the traffic study to inform the site specific DCP. The collection and calibration of this data has been undertaken in co-ordination with Council, including a Traffic Modelling Assumptions Report prepared by Ratio, initially submitted in June 2020, that has been approved by Council. On this basis a detailed transport impacts assessment of the proposal was submitted for consideration in October 2020.

Subsequent to this October 2020 assessment, additional information has been requested by Transport for New South Wales (TfNSW) via an RFI dated 10th February 2021. Amongst other items, the RFI seeks additional traffic volume data for surrounding intersections. In light of the reduced Covid-19 restrictions and the stabilisation of traffic volume data, the additional traffic counts were undertaken. This assessment therefore updates the October 2020 assessment to include the additional intersections and the updated traffic volume data.

3.1 Location and Environment

The subject site (Fairfield Forum Shopping Centre) is located on the south-east corner of the Station Street and Cunninghame Street intersection in Fairfield.

The site's location relative to the surrounding area and road network is shown in Figure 3-1 and Figure 3-2.

Figure 3-1: Site Locality Plan

Source: www.street-directory.com.au

Figure 3-2: Aerial Photograph of Subject Site and Surrounds

Source: <u>www.nearmap.com</u>

r:

The subject site is irregular in shape and is generally bound by Cunninghame Street to the north, residential properties fronting onto Smart Street to the east, Nelson Street to the south and Station Street to the west

The subject site accommodates an overall area of approximately 4.2 hectares and is currently occupied by approximately 18,000 sqm of retail space comprising over 40 stores including Coles and K-Mart.

An on-site car park accommodating approximately 750 parking spaces is also provided.

3.2 Surrounding Land Uses

The site is located within the Fairfield Town Centre and is zoned as a Mixed-Use Zone (B4) within the Fairfield Local Environmental Plan 2013. The surrounding properties are predominantly commercial in nature to the south and residential to the north.

The site is located at the northern section of the Fairfield Town Centre and key non-residential land uses in the vicinity are detailed below:

- Fairfield Public School located approximately 200 metres east of the subject site.
- Neeta City Shopping Centre located approximately 250 metres south-east of the subject site (FCC UDF Site #2).
- Fairfield Library located approximately 300 metres south of the subject site (FCC UDF Site #10).
- Fairfield Centrelink and Medicare located approximately 450 metres south of the subject site.
- Fairfield City Centre located approximately 500 metres south of the subject site.
- Fairfield Chase Shopping Centre located approximately 600 metres south-east of the subject site.
- Fairfield High School located approximately 600 metres east of the subject site.

Having regard to the Fairfield Town Centre as a whole, the subject site forms the northern most parcel within the list of Key Sites in the *Fairfield City Centre Urban Design Study 2018*.

All other Key Sites are located south of Nelson Street which acts as a buffer to future development. Sites 2, 11, 12 and 13 are the closest Key Sites to the subject site.

The location of these Key Sites is shown overleaf in Figure 3-3.

Figure 3-3: Map of Key Site Locations

Source: Fairfield City Centre Urban Design Study 2018

As shown in Figure 3-3, the subject site is located at the northern periphery of the Town Centre and is separated from all other key development sites by Nelson Street.

3.3 Existing Access Arrangements

Current vehicle access to the site is provided via a number of vehicle crossovers situated along Cunninghame Street, Ware Street, Smart Street and Station Street.

A total of 9 site access points currently provide access to the subject site.

The location of these site accesses is shown overleaf in Figure 3-4.

Figure 3-4: Existing Site Access Locations

Source: <u>www.nearmap.com</u>

3.4 Road Network

The subject site is directly fronted by a number of local roads which provide access to and from the surrounding precinct. These are identified in Figure 3-5 with further detail provided below.

Figure 3-5: Local Road Network

Source: <u>www.nearmap.com</u>

Cunninghame Street

Cunninghame Street is a Council controlled road connecting from Station Street in the southwest to The Horsley Drive in the northeast.

Along the site frontage, Cunninghame Street has an approximate carriageway width of 12.6 metres. Within the road reserve Cunninghame Street comprises a single carriageway with one through lane in each direction and parallel parking provided along both kerbs. Along the site frontage, Cunninghame Street has a posted speed limit of 50km/h.

Figure 3-6 shows the typical configuration of Cunninghame Street along the frontage of the site.

Figure 3-6: Cunninghame Street Typical Configuration

Station Street

Station Street is a Council controlled road connecting from The Boulevarde in the northwest to Nelson Street in the south.

Along the site frontage, Station Street has an approximate carriageway width of 12.6 metres. Within the road reserve, Station Street comprises a single carriageway with one through lane in each direction and parallel parking provided along both kerbs. Along the site frontage, Station Street has a posted speed limit of 50km/h.

Figure 3-7 shows the typical configuration of Station Street along the frontage of the site.

Figure 3-7: Station Street Typical Configuration

Source: <u>www.nearmap.com</u>

Source: www.nearmap.com

Ware Street

Ware Street is a local street that runs in a north-south alignment along the eastern boundary of the site. It extends south from Cunninghame Street and continues into the site as one of the existing access points.

In the vicinity of the site, Ware Street accommodates a carriageway of approximately 12.5 metres comprising a central through lane in each direction as well as outer kerbside parking. Along the site frontage, Ware Street operates with a default 50km/h speed limit.

Figure 3-8 shows the typical configuration of Station Street along the frontage of the site.

Figure 3-8: Ware Street Typical Configuration

Source: <u>www.nearmap.com</u>

3.5 Traffic Volume Data

Due to social distancing regulations resulting from Covid-19, traffic volumes in 2020 were much lower than typical conditions and as such could not be used in the preparation of the transport study. Historical traffic volume data was therefore sourced as either Turning Movement Counts (TMC) or SCATS data as part of the October 2020 assessment.

Whilst it was not possible to source historical traffic volume for all intersections throughout the Fairfield Town Centre, the October 2020 assessment sourced traffic volume data for the following intersections:

- 1. The Horsley Drive/Nelson Street/Court Road (TMC 2019);
- 2. Nelson Street/Smart Street (TMC 2016);
- 3. Nelson Street/Station Street (SCATS); and
- 4. Station Street/Sackville Street (TMC 2018).

Following receipt of the TfNSW RFI, additional traffic volume data has been collected on 4^{th} and 6^{th} March 2021 at the following intersections:

- 5. Nelson Street/Station Street (TMC);
- 6. Cunninghame Street/The Horsely Drive (TMC); and
- 7. The Horsely Drive/Polding Street (TMC).

The context of these intersections in relation to the subject site is illustrated in Figure 3-9.

Figure 3-9: Key Intersections

These intersections form key access points to the Fairfield Town Centre and are considered appropriate intersections to form the basis of the transport study.

Review of the sourced traffic volume data identifies the following critical road network peak hours that will form the basis of the traffic study:

AM Peak:PM Peak:

Weekend Peak:

8am - 9am 4.30pm - 5.30pm 12noon - 1pm

3.6 Traffic Volume Calibration

The historical traffic data has been sourced for the identified intersections across a number of dates. As such, each individual intersection has required some form of calibration to achieve an equivalent volume. The initial modelling process was undertaken and agreed with Council to coincide with pre-covid volumes, and as such 2019 is the equivalent year all volumes are calibrated to. To assess the calibration required of the historical data, SCATS volume data for each intersection has also been sourced from RMS for Thursday 24th October 2019 and Saturday 26th October 2019.

A comparison of the dates for the sourced data sets is provided as Table 3.1.

Table 3.1: Dates of Sourced Data

Intersection	Historical TMC	RMS Data
The Horsley Drive/Nelson Street/Court Road	23 rd October 2019	antha ann an
Nelson Street/Smart Street	24 th November 2016	24 th October & 26 th October 2019
Station Street/Sackville Street	9 th May 2018	

To estimate traffic conditions for 2019, traffic volumes at key intersections where data is available have been compared to establish potential growth on the road network e.g. TMC data vs RMS data. The established growth rate is then to be applied to each intersection to derive an "existing conditions" model.

Given the available TMC data for The Horsley Drive/Nelson Street/Court Road intersection is collected within the same week as the RMS data it is not proposed to calibrate this data further.

A review of the available data reveals there has generally been a *reduction* in traffic volumes recorded around the town centre with the RMS SCATS data (2019) being consistently lower than the TMC data. A traffic volume comparison of total intersection volumes during peak hours for intersections within the Town Centre is provided at Table 3.2.

Table 3.2: Town Centre Intersection Peak Hour Volumes Growth Rates

Time	ТМС	RMS	Growth Rate			
Nelson Street/Smart Street (2016)						
8am-9am	1,335vph	1,334vph	0.0%			
5pm-6pm	1,497vph	1,403vph	-2.1%			
Sackville Street/Station Street (2018)						
8am-9am	1,511vph	1,431vph	-5.3%			
5pm-6pm	1,676vph	1,589vph	-5.2%			

Overall traffic volumes in the study area have remained largely static, or have reduced which is further illustrated by the RMS Traffic Volume Viewer, reproduced at Figure 3-10, which indicates traffic on nearby Fairfield Street has been steadily reducing since 2015. It is acknowledged that this data is not from within the study area, however the data illustrates the general reduction in traffic volumes in the area, consistent with other data sourced.

Figure 3-10: RMS Traffic Monitor Daily Traffic Volume Decrease

On the basis of the preceding, the higher traffic volumes, as set out within the historical TMC data, for Town Centre traffic volumes will be adopted for the purposes of assessing the existing intersection operations. This is considered a conservative and robust existing conditions assessment as it adopts the higher of the available traffic volumes irrespective of the year they occurred.

The existing peak hour traffic volumes are presented in Figure 3-11 to Figure 3-13 and reproduced in Appendix B for clarity.

Figure 3-11: AM Peak Hour Turning Movements

Figure 3-12: PM Peak Hour Turning Movements

Figure 3-13: Saturday Peak Hour Turning Movements

3.7 Existing Intersection Operation

General

A peak hour intersection analysis has been undertaken using the intersection analysis program SIDRA for the following intersections:

- Nelson Street / The Horsley Drive / Court Road;
- Nelson Street / Smart Street;
- Nelson Street / Ware Street;
- Nelson Street / Station Street;
- Sackville Street / Station Street;
- Cunninghame Street / The Horsely Drive; and
- Polding Street / The Horsely Drive.

Due to the close proximity of the intersections and the coordinated nature of their operations, the Nelson Street intersections have been modelled as a network in SIDRA, with the network geometry displayed in Figure 3-14.

The intersection of Sackville Street and Station Street has been modelled as a single intersection, with layout displayed in Figure 3-15.

The adopted phasing for the SIDRA network is based on SCATS data sourced from RMS.

Figure 3-14: SIDRA Network Layout

Figure 3-15: SIDRA Intersection Layout, Sackville Street/Station Street

SIDRA Parameters

The key parameters used to determine the operational capacity of an intersection are degree of saturation (or volume to capacity ratio), queue length and Level of Service.

Degree of Saturation is a ratio of arrival (or demand) flow to capacity. Degrees of saturation above 1.0 represent oversaturated conditions and degrees of saturation below 1.0 represent undersaturated conditions.

The operational rating associated with the degree of saturation is summarised in Table 3.3.

Table 3.3:	Ratings of	f Degree of	Saturation
------------	------------	-------------	------------

Degree of Saturation (DOS)	Rating		
Up to 0.6	Excellent		
0.61 - 0.70	Very Good		
0.71 - 0.80	Good		
0.81 - 0.90	Fair		
0.91 - 1.00	Poor		
Greater than 1.00	Very poor		

Although operating conditions with a degree of saturation around 1.00 are undesirable, it is acknowledged that this level of congestion is typical of many metropolitan intersections during the AM and PM peak hours.

The 95th percentile queue length is the value below which 95 percent of all observed cycle queue lengths fall, or 5 percent of all observed queue lengths exceed.

The Level of Service (LoS) is an assessment of the average control delay per vehicle, expressed in seconds. The lower the delay, the better the LoS.

The operational rating associated with the RMS LoS is summarised in Table 3.4.

Control Delay in Seconds (d)	Level of Service
d < 14	А
d < 15 to 28	В
d < 29 to 42	С
d < 43 to 56	D
d < 57 to 70	E
d > 70	F

Table 3.4: Ratings of RMS Level of Service (LoS)

Results – Weekday Peak Hours Existing Conditions

The results of the existing conditions peak hour SIDRA analyses are detailed in Appendix C.

A summary of the weekday AM and PM peak hours is provided in Table 3.5 to Table 3.10.

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Barbara Street (South)	0.51	42	С	0.75	85	С
Nelson Street (East)	0.52	22	В	0.73	24	С
Station Street (North)	0.52	44	С	0.68	18	D
Nelson Street (West)	0.49	22	D	0.68	26	С
Intersection	0.52		С	0.75		С

Table 3.5: Existing Weekday Peak Conditions, Nelson Street/Station Street

Review of the above results shows that the intersection of Nelson Street/Station Street currently operates under 'excellent' conditions during the AM peak with an LoS of C and 'fair' conditions during the PM peak with an LoS of C.

Table 3.6: Existing Weekday Peak Conditions, Nel	lson Street/Ware Street
--	-------------------------

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Nelson Street (East)	0.13	21	А	0.24	35	А
Nelson Street (West)	0.17	10	А	0.15	6	А
Intersection	0.17		А	0.24		А

Review of the above results shows that the intersection of Nelson Street/Ware Street currently operates under 'excellent' conditions in both the AM and PM peak periods with an LoS of A.

	W	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Smart Street (South)	0.30	14	D	0.43	25	D
Nelson Street (East)	0.29	30	С	0.44	35	С
Smart Street (North)	0.41	39	С	0.44	33	D
Nelson Street (West)	0.42	28	D	0.26	25	С
Intersection	0.42		С	0.44		С

Table 3.7: Existing Weekday Peak Conditions, Nelson Street/Smart Street

Review of the above results shows that the intersection of Nelson Street/Smart Street currently operates under 'excellent' conditions in both the AM and PM peak periods with an LoS of C.

Table 3.8: Existing Weekday Peak Conditions, Smart Street/Smart Lane

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Smart Street (South)	0.10	0	А	0.19	0	А
Smart Street (North)	0.38	2	А	0.22	1	А
Smart Lane (West)	0.04	0	A	0.07	1	А
Intersection	0.38		А	0.22		А

Review of the above results shows that the intersection of Smart Street/Smart Lane currently operates under 'excellent' conditions in both the AM and PM peak periods with an LoS A.

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Court Road (South)	0.84	58	E	0.86	92	E
The Horsley Drive (SouthEast)	0.84	134	D	0.88	157	D
The Horsley Drive (North)	0.59	14	С	0.61	106	С
Nelson Street (West)	0.85	8	E	0.77	39	D
Intersection	0.85		D	0.88	157	D

Table 3.9: Existing Weekday Peak Conditions, Nelson Street/Horsley Drive/Court Road

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road currently operates under 'fair' conditions during both the AM and PM peak hours with an LoS of D.

Table	3.10:	Existing	Weekday	Peak	Conditions,	Sackville	Street/Station
Street							

	V	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Station Street (South)	0.72	57	D	0.95	163	E
Sackville Street (East)	0.80	84	D	0.95	165	D
Station Street (North)	0.75	77	D	0.91	77	E
Sackville Street (West)	0.95	216	E	0.80	117	D
Intersection	0.95		D	0.95		D

Review of the above results shows that the intersection of Sackville Street/Station Street currently operates under congested conditions during the AM peak and PM peak, operating under 'very poor' conditions, with a LoS of D.

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.48	0	А	0.63	0	А
Cunninghame Street (West)	0.42	0	А	0.41	0	А
The Horsley Drive (North)	1.0+	13	F	0.95	1	F
Intersection	1.0+		F	0.95		F

Table 3.11: Existing Weekday Peak Conditions, Cunninghame Street/Horsley Drive

Review of the above results shows that the intersection of Cunninghame Street/The Horsley Drive currently operates under congested conditions during the AM peak and PM peak, operating under 'very poor' conditions, with a LoS of F. It should be noted that this is related to the low number of right turning vehicles which are opposed by the high quantum of through volumes on The Horsley Drive.

	W	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.84	88	D	0.90	99	D
Polding Street (East)	0.82	59	D	0.87	105	D
The Horsley Drive (North)	0.83	116	E	0.88	154	E
Polding Street (West)	0.80	112	D	0.88	84	D
Intersection	0.84		D	0.90	154	D

Table 3.12: Existing Weekday Peak Conditions, Polding Street/Horsley Drive

Review of the above results shows that the intersection of The Horsley Drive/Polding Street currently operates under congested conditions during the AM peak and PM peak, operating under 'poor' conditions, with a LoS of D.

Results – Saturday Peak Hours Existing Conditions

The Saturday peak hour results are summarised in Table 3.13 to Table 3.18.

Table 3.13: Existing Saturday Peak Conditions, Nelson Street/ StationStreet/Barbara Street

	Saturday Peak					
Approach	D.O.S.	95%ile Queue (m)	L.O.S.			
Barbara Street (South)	0.78	82	С			
Nelson Street (East)	0.75	45	С			
Barbara Street (North)	0.74	36	D			
Nelson Street (West)	0.78	44	D			
Intersection	0.78		D			

Review of the above results shows that the intersection of Nelson Street/ Station Street/Barbara Street currently operates under 'good' conditions during the Saturday peak hour with an LoS of D.

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Nelson Street (East)	0.33	36	А		
Nelson Street (West)	0.27	12	А		
Intersection	0.33		А		

Table 3.14: Existing Saturday Peak Conditions, Nelson Street/Ware Street

Review of the above results shows that the intersection of Nelson Street/Ware Street currently operates under 'excellent' conditions during the Saturday peak hour with an LoS of A.

Table 3.15: Existing Saturday Peak Conditions, Nelson Street/Smart Street

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Smart Street (South)	0.42	28	D		
Nelson Street (East)	0.27	31	С		
Smart Street (North)	0.41	31	D		
Nelson Street (West)	0.41	29	С		
Intersection	0.42		С		

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court currently operates under 'excellent' conditions during the Saturday peak hour with an LoS of C.

 Table 3.16: Existing Saturday Peak Conditions, Smart Street/Smart Lane

	Saturday Peak			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	
Smart Street (South)	0.19	0	А	
Smart Street (North)	0.20	1	А	
Smart Lane (West)	0.07	1	А	
Intersection	0.20		А	

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road currently operates under 'excellent' conditions with an LoS of A.

	Saturday Peak			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	
Court Road (South)	0.83	103	D	
Horsley Drive (Southeast)	0.80	84	D	
Horsley Drive (North)	0.46	71	С	
Nelson Street (West)	0.71	35	D	
Intersection	0.83		D	

Table 3.17: Existing Saturday Peak Conditions, Nelson Street/Horsley Drive/Court Road

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road currently operates under 'fair' conditions during the Saturday peak hour with an LoS of D.

Table 3.18: Existing Saturday Peak Conditions, Sackville Street/StationStreet

	Saturday Peak			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	
Station Street (South)	0.95	163	E	
Sackville Street (East)	0.95	165	D	
Station Street (North)	0.91	78	E	
Sackville Street (West)	0.80	117	D	
Intersection	0.95		D	

Review of the above results shows that the intersection of Sackville Street/Station Street currently operates under 'very poor' conditions during the Saturday peak hour with an LoS of D.

Table 3.19: Existing Weekday Peak Conditions, Cunninghame Str	eet/Horsley
Drive	

	Saturday Peak			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	
The Horsley Drive (South)	0.35	0	A	
Cunninghame Street (West)	0.37	0	А	
The Horsley Drive (North)	1.0+	6	F	
Intersection	1.0+		F	

Review of the above results shows that the intersection of Cunninghame Street/The Horsley Drive currently operates under congested conditions during the Saturday peak hour, operating under 'very poor' conditions, with a LoS of F. It should be noted that this is related to the low number of right turning vehicles which are opposed by the high quantum of through volumes on The Horsley Drive.

	Sa	aturday Pea	ak
Approach	D.O.S.	95%ile Queue	L.O.S.

Table 3.20: Existing Weekday Peak Conditions, Polding Street/Horsley Drive

Approach	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.75	84	D
Polding Street (East)	0.75	61	D
The Horsley Drive (North)	0.75	105	D
Polding Street (West)	0.70	69	D
Intersection	0.75		D

Review of the above results shows that the intersection of The Horsley Drive/Polding Street currently operates under congested conditions during the Saturday peak hour, operating under 'fair conditions, with a LoS of D.

3.8 Pedestrian Connectivity

The Fairfield Town Centre benefits from a well-connected local pedestrian network that facilitates convenient pedestrian access to many local facilities contained within the precinct.

The NSW "*Planning Guidelines for Walking and Cycling*" (NSW DIPNR 2004) identifies the benchmarks for accessibility, suggesting sixty percent of the area within a walking catchment should be able to be reached by a five to ten minute walk along the street.

Based on typical pedestrian travel speeds of 1.4m/s, a five minute walk time is calculated as equating to a walk distance of 420 metres, with a ten minute walking time equating to 840 metres.

Based on this, Figure 3-16 has been prepared showing the areas of Fairfield accessible within a five and ten minute walk from the centre of Fairfield.

Figure 3-16: Walking distance from the centre of Fairfield

Review of the above figure subsequently indicates that the majority of the Town Centre, including the subject site, is situated within a five-minute walk from the middle of the precinct.

Furthermore, the entire town centre, as well as many surrounding residential streets, are captured within the 10-minute walking catchment.

It is therefore considered that Fairfield town centre is well suited to encourage people to use walking as a primary mode of travel, when accessing the various local facilities.

3.9 Bicycle Connectivity

In addition to the excellent pedestrian connectivity, the Fairfield Town Centre and surrounding precinct also benefits from the provision of a comprehensive network of cycleways throughout the precinct.

Over 100 kilometres of cycleway are provided, traversing east/west and north/south linking Fairfield to adjacent areas. The cycleways are primarily off-road and provide access to the major rail and bus public transport systems.

Within proximity of the Fairfield Town Centre, there are three main regional cycling routes providing east/west connectivity across the precinct:

- Prospect Creek share path connects to the Holroyd City network and Fairfield Town Centre.
- Bay to Mountains shared path connects to Mirambeena Regional Park and to Prospect Reservoir, Blacktown.
- Fairfield Council has recently completed stages 1 to 3 of the Cabramatta Creek shared path which connects the Bay to Mountains network to Cowpasture Road.

In conjunction with these routes, there are also two regional routes that provide north/south connectivity across the precinct:

- Rail Trail cycleway connects Paramatta to Liverpool and links to Prospect Creek and the Bay to Mountains shared path network. This path will connect to the Cabramatta Creek shared path when the next stages are completed.
- T-Way cycleway connects Parramatta to Liverpool and links to the Bay to Mountains and the St Johns Park shared path network.

The cycling network in the vicinity of the site is shown in Figure 3-17.

Figure 3-17: Cycling Network

With regards to the wider bicycle network and based on an average cyclist travel speed of 4.2m/s, Figure 3-18 has been prepared showing the five-minute and ten-minute cycling catchment areas from the middle of the Fairfield Town Centre.

Figure 3-18: Cycling distance from the centre of Fairfield

Review of the above figure subsequently indicates that the entirety of the Town Centre, including the subject site, is situated within a five-minute ride from the middle of the precinct.

Furthermore, a large portion of surrounding residential streets are situated within a ten-minute ride from the Town Centre.

It is therefore considered that Fairfield town centre is well suited to encourage people to use cycling as an alternate mode of travel, when accessing the various local facilities.

3.10 Public Transport Opportunities

In addition to the pedestrian and cyclist connectivity provided within the precinct, the Fairfield Town Centre is also well serviced by both bus and train services providing multiple, conveniently accessible, public transport options.

Figure 3-19 shows the public transport facilities provided at a local context within the Fairfield Town Centre with Figure 3-20 showing the wider public transport network and its connectivity throughout the surrounding areas.

Figure 3-19: Local Public Transport

Source: transportnsw.info
Figure 3-20: Public Transport Network

Source: transportnsw.info

As identified within the preceding figures, multiple bus routes operate directly within the Fairfield Town Centre, providing connectivity throughout the surrounding precinct. All buses operating within the Fairfield Town Centre stop at the Fairfield Railway Station to provide connectivity between bus and train services.

Most suburbs within the surrounding Fairfield LGA are serviced by bus routes providing connection to/from the Fairfield Town Centre by either dedicated north – south or east-west connections through the LGA. Bus services within the Fairfield LGA typically operate at regular frequencies of between 15 – 30 minutes.

Train connectivity within the precinct is facilitated via the Fairfield Railway station located towards the southern end of the Town Centre. The station is located 300 metres from the town centre and is accessible within a four-minute walk or a two-minute cycle ride.

Fairfield Railway Station is located on the Inner West & Leppington and Cumberland Lines with trains arriving/departing the station on both lines at regular intervals.

The station provides access to key interchange stations including Richmond, Liverpool, Blacktown, and Central Station, along with other local stations.

Table 3.21 provides a summary of the services available within the Fairfield Town Centre along with their service frequency.

Table	3.21:	Public	Transport	Services
-------	-------	--------	-----------	----------

Service	Route No / Station	Route	Frequency
	800	Blacktown – Fairfield	15 mins
	817	Cabramatta - Fairfield	30 mins
	802	Liverneel Derremette	30 mins
	804	Liverpool – Parramatta	15 mins
	812	Blacktown – Fairfield	30 mins
Bus	813	Bonnyrigg – Fairfield	30 mins
	814	Fairfield - Smithfield	30 mins
	904	Fairfield - Liverpool	Hourly
	905	Bankstown – Fairfield	15 mins
	906	Fairfield - Parramatta	30 mins
	S4	Fairfield – Chester Hill	Two a day
Train	Fairfield Railway Station	Inner West & Leppington and Cumberland Lines	6 - 30 minutes

It is therefore considered that the Fairfield Town Centre is well serviced by various public transport options which will provide a viable and practical alternative means of travel to private vehicle both within the town centre and within the wider surrounding precinct.

4.1 Development Schedule

It is proposed to redevelop the site into a mixed use precinct consisting of approximately 1,489 residential apartments and 17,593sqm. of retail space.

The development is proposed to comprise four buildings on the subject site. More specifically, the Master Plan prepared for the development indicates the following uses in Table 4.1. It is noted that whilst the final development schedule will be refined through the DA process, it is expected to generally reflect the uses set out in Table 4.1.

Table 4.1: Development Schedule

Use		Existing Proposed		Difference
Retail		17,748 sqm	17,593 sqm	+155 sqm
	1 & 2 bedrooms	-	1,310 no.	+1,310 no.
Dwellings	3 or more bedrooms	-	179 no.	+179 no.
	Total	-	1,489 no.	+1,489 no.

This assessment is based on the following development plan, as shown in Figure 4-1, prepared by Rothelowman Architects.

Figure 4-1: Proposed Site Layout

r:

4.2 Vehicle and Pedestrian Access

As discussed previously, under existing conditions, vehicle access to/from the site is currently facilitated via the provision of multiple access points (total 9) situated around the site.

As part of the proposed development, the existing access arrangements are to be consolidated and reduced with vehicle access proposed to be provided as follows:

- 1 car park accessed from Ware Street;
- 1 car park accessed from Smart Lane;
- 1 combined car park and loading dock accessed from Ware Street;
- 1 combined car park and loading dock accessed from Station Street; and
- 1 car park accessed from Station Street.

In addition to these proposed access locations, a new local connection is proposed to be provided between Station Street and the current southern extent of Ware Street, providing road network linkage through the site.

These proposed access locations in conjunction with the proposed internal road link will allow for connectivity between the subject site and the surrounding road network.

The proposed access points have been located such that they are situated away from critical intersection areas such as the Ware Street extension to Station Street and the existing intersection with Cunninghame Street. By locating site access away from these areas increases legibility and reduces conflict.

Additionally, the proposed access points have been located such that the "core" of the Ware Street extension is free from excessive traffic volumes. The location of the access points is therefore intended to promote the amenity of Ware Street, reduce the intensity of traffic and improve pedestrian activity through the area.

Similarly, the location of car parking and loading facilities have been considered within the concept development plans. Specifically, loading areas have been located away from high traffic pedestrian areas and have been arranged such that they are serviced by a single location to reduce points of conflict. Proposed resident and customer car parking areas have been separated and are provided in independent basement car parking areas to accommodate residential amenity and security.

The provision of multiple access points to the site seeks to distribute the traffic load across the wider road network and to provide a number of access points that provide direct access to the road network to reduce internal congestion associated with circulation.

Figure 4-2 following shows the proposed site access locations along with the new local road connection.

The proposal also incorporates the pedestrian connectivity of the existing Ware Street pedestrian mall that connects the existing Fairfield Forum centre to the wider town centre via a high amenity crossing of Nelson Street as illustrated in Figure 4-3. Given this existing high amenity crossing and alignment with pedestrian desire lines, additional crossings are not proposed.

Figure 4-2: Site Access Locations

Figure 4-3: Pedestrian Connectivity to the Town Centre

5.1 Traffic Generation

Retail Traffic

Development plans for the proposal indicates that upon completion, the retail component of the site will total 17,593 sqm of floor space. The floor area of the existing retail centre on the subject site is 17,748sqm and as such is similar in size and nature.

It is noted that the retail component of the site is to remain largely unchanged from existing conditions. As such, the traffic generation of the retail component is already captured within the existing traffic volume counts and the calculation of additional retail traffic generation is not required at external intersections. Specifically, this applies to the 5 external intersections identified within this report.

Therefore, traffic for the retail component will continue to be accommodated within the surrounding road network as per existing operations.

Residential Traffic

In light of the above, the residential component of the proposal is identified as generating the additional traffic from the site.

In assessing the potential traffic generation of the residential component of the proposal, guidance has been taken from the *RMS Guide to Traffic Generating Developments – Updated Traffic Surveys (August 2013).* This document sets out AM peak hour, PM peak hour and daily traffic generation rates for residential dwellings.

These rates were compiled from surveys of a number of metropolitan sites and regional sites. As noted in the Traffic Modelling Assumptions Report, the regional sites are not considered to be comparable with the characteristics of the subject site and so have been omitted. Additionally, a number of the metropolitan sites were not considered comparable given their close proximity to the Sydney CBD.

Council officers have consequently specified the use of the following traffic generation rates:

- 0.30 movements/dwelling in the AM peak hour;
- 0.30 movements/dwelling in the PM peak hour;
- 0.30 movements/dwelling in the Saturday peak hour; and
- 2.0 vehicle trips per day per unit.

The Council specified traffic generation rates are significantly higher than the RMS data, indeed, there is only one RMS rate higher across all the metropolitan sites in each of the AM and PM peak hours.

Given the context of the subject site in a town centre and the proximity of the Fairfield railway station, and bus services, the traffic generation rate is anticipated to be better represented by the RMS data for Paramatta, which is less than the rates specified by Council.

For comparison, the Council specified rates and the RMS Paramatta generation rates have been applied to the proposal as shown in Table 5.1

Table 5.1: Residential Traffic Generation

Rates	Schedule	Weekday AM Peak	Weekday PM Peak	Weekend Peak	Daily Traffic
Council Specified	1 // 00 / upita	447 vph	447 vph	447 vph	2,978 vpd
RMS Paramatta	1,409 UNITS	402 vph	179 vph	328 vph	2,487 vpd

In light of the above, it is considered that the specified Council traffic generation rates reflect the upper range of traffic generation and are therefore a conservative assessment representing a potential over estimation of traffic volumes.

Nevertheless, to provide a robust assessment, the higher Council specified traffic generation rates have been adopted for the purposes of this assessment.

5.2 Traffic Distribution

Retail Traffic Distribution

As stated earlier, it is considered that traffic as generated by the retail component of the development will largely be in line with existing conditions and therefore will continue to be accommodated within the surrounding road network as per existing operations.

Residential Traffic Distribution

The majority of the traffic generated by the residential aspect of the development during the AM peak period will be residents departing the site whilst the majority of the traffic during the PM peak period will be residents returning to the site.

It is assumed that residential movements will be distributed as per Table 5.2 during the assessed peak hours.

Table 5.2: Anticipated Traffic Distribution - Residential	
---	--

Time	Inbound	Outbound
AM Peak	20%	80%
PM Peak	60%	40%
Saturday Peak	50%	50%

Applying the above distributions to the proposed traffic generation results in the peak hour traffic movements shown in Table 5.3.

Table 5.3: Anticipated Traffic Generation - Residential

Use	Time	Inbound	Outbound	Total
Residential	AM Peak (vph)	89 vph	358 vph	447 vph
	PM Peak (vph)	269 vph	178 vph	447 vph
	Saturday Peak	223 vph	224 vph	447 vph
	Daily (vpd)	1,489 vpd	1,489 vpd	2,978 vpd

A review of the Transport for New South Wales 'Household Travel Survey' trip purpose data has been undertaken for the 'Fairfield' area which is considered to be reflective of the location of the subject site.

Table 5.4 shows the trip purpose percentage data and the resulting proposed traffic generation.

Table 5.4: Trip Purpose Data - Residential

	Driver / Passenger					
Trip Purpose	Peak Hour %	AM Peak	PM Peak	Daily		
Work Related	24%	107	107	715		
Education	12%	54	54	357		
Shopping	20%	89	89	596		
Social / Recreation	20%	89	89	596		
Personal	8%	36	36	238		
Other	16%	16% 72		476		
Total	100%	447	447	2,978vpd		

Source: <u>transportnsw.gov.au</u>

As shown in Table 5.4, peak hour trips are made for a variety of reasons, including work, education, shopping etc.

It is noted that within the identified trip purposes are a number of purposes that can be fulfilled within the Fairfield town centre e.g. shopping, work related, social etc. Given the walkability of the town centre it is considered that these vehicle trips would not be generated and would instead be replaced with walking trips.

This mode shift would therefore result in lower traffic generation rates. Nevertheless, to provide a robust assessment, the Council specified traffic generation rates have been adopted.

A review of places of employment, retail and educational facilities in the surrounding area and suburbs has been undertaken, resulting in the assumed percentage distribution outlined in Figure 5-1.

Figure 5-1: Adopted Traffic Distribution

Based on Figure 5-1, the anticipated peak hour traffic movements on the local road network of the additional residential traffic generation are shown in Figure 5-6 to Figure 5-8.

It is noted that at the external intersections only the additional residential traffic has been added as the retail traffic is already captured within the existing volumes. At the Ware Street intersections with Station Street and Cunninghame Street the volumes include both residential and retail traffic volumes as, at a site level, the new access strategy results in a redistribution of retail traffic to access points.

Figure 5-2: Site-Generated AM Peak Hour Volumes

15881T REP05 F01 / April 2020

Figure 5-3: Site-Generated PM Peak Hour Volumes

r:

Figure 5-4: Site-Generated Saturday Peak Hour Volumes

5.3 Growth (Base Case)

In order to estimate the future traffic volumes on the road network, a growth rate has been applied to the existing road network volumes displayed previously in Section 3.6.

As set out in Section 3.6 the existing traffic volumes have either remained static, or reduced over time since 2015. This data suggests that the background traffic volumes over the past 5 years on the Town Centre road network are not experiencing noteworthy growth.

An additional assessment of the arterial road network growth on The Horsely Drive has been undertaken based on the additional traffic volume data collected. Peak hour traffic volumes of The Horsley Drive have been assessed where the northbound and southbound volumes have been compared between the intersections with Nelson Street and Polding Street to identify growth patterns on the arterial road network. i.e. northbound traffic departing the Nelson Street intersection compared to northbound traffic approaching the Polding Street intersection. This is summarised in Table 5.5.

Time	Nelson Street Intersection (2019)	Nelson Street Polding Street ntersection (2019) Intersection (2021)					
Northbound							
8am-9am	1,205vph	1,239vph	0.1% pa				
5pm-6pm	1,414vph	1,410vph	0.0% pa				
Southbound							
8am-9am	1,432vph	1,410vph	-0.1% pa				
5pm-6pm	1,279vph	1,370vph	+3.0% pa				

Table 5.5: The Horsely Drive Peak Hour Volume Growth Rates

A review of the data in Table 5.5 indicates that the traffic volumes on the arterial road network have remained largely static, with 3 of the 4 assessment flows being unchanged between 2019 and 2021.

On the basis of the preceding, and the data presented in Section 3.6 the higher traffic volumes, as set out within the historical TMC data, for Town Centre traffic volumes will be adopted for the purposes of assessing the existing intersection operations without application of a traffic growth rate. This is considered representative for traffic with origins or destinations *within* the Fairfield Town Centre.

It is acknowledged that through traffic, that is, traffic with origins and destinations *external* to the Fairfield Town Centre, may seek to use the identified road network i.e. pass through the town centre as part of a journey originating and finishing outside the town centre. This is also applicable to through traffic on the arterial road network i.e. The Horsley Drive.

With consideration to this, and the limited growth in volumes observed on The Hosley Drive, a linear growth rate of 1% per annum will be applied to external precinct traffic across all major roads including:

- Through movements on Nelson Street;
- Through movements on Sackville Street; and
- Through movements on The Horsley Drive.

A growth rate of 1% has been applied for a period of 10 years, and has been calculated on the basis of historical traffic volume trends. The application of this growth rate is considered representative of the ongoing change in land use patterns of the surrounding area as they relate to traffic volumes.

Application of the growth rate to the existing through volumes, displayed previously in Figure 3-11 to Figure 3-13, result in the 2029 network 'base case' volumes displayed in Figure 5-5 to Figure 5-7.

Figure 5-5: AM Peak Hour Base Case Volumes

Figure 5-6: PM Peak Hour Base Case Volumes

r:

Figure 5-7: Saturday Peak Hour Base Case Volumes

Results – Weekday Peak Hours Base Case Conditions

The base case intersection turning movement volumes have been input into the existing SIDRA road network layout displayed previously in Figure 3-14.

The SIDRA results for the base case weekday AM and PM peak hours are summarised in Table 5.6 to Table 5.11 with detailed SIDRA analysis in Appendix D.

Table 5.6: Base Case Weekday Peak Conditions, Nelson Street/Station Street

	W	/eekday AN	M Weekday PM			Л
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS
Barbara Street (South)	0.56	46	С	0.75	115	С
Nelson Street (East)	0.58	24	В	0.75	51	D
Station Street (North)	0.56	48	С	0.72	43	Е
Nelson Street (West)	0.54	23	D	0.73	50	E
Intersection	0.58		с	0.75		D

Review of the above results shows that the intersection of Nelson Street/Station Street is anticipated to operate under 'excellent' conditions during the AM peak with an LoS of C and 'fair' conditions during the PM peak with an LoS of D.

	W	/eekday AN	Л	V	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS	
Nelson Street (East)	0.14	23	А	0.38	45	А	
Nelson Street (West)	0.19	11	А	0.16	7	А	
Intersection	0.19		А	0.38		А	

Table 5.7: Base Case Weekday Peak Conditions, Nelson Street/Ware Street

Review of the above results shows that the intersection of Nelson Street/Ware Street is anticipated to operate under 'excellent' conditions in both the AM and PM peak periods.

Table 5.8: Base Case Weekday Peak Conditions, Nelson Street/Smart Street

	W	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS	
Smart Street (South)	0.30	14	D	0.44	34	E	
Nelson Street (East)	0.30	32	С	0.45	52	С	
Smart Street (North)	0.43	39	С	0.44	44	D	
Nelson Street (West)	0.42	27	D	0.28	38	D	
Intersection	0.43		с	0.45		D	

Review of the above results shows that the intersection of Nelson Street/Smart Street is anticipated to operate under 'excellent' conditions in both the AM and PM peak periods with an LoS of C & D.

Table 5.9: Base Case Weekday Peak Conditions, Smart Street/Smart Lane

	W	/eekday AN	Л	Weekday PM			
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS	
Smart Street (South)	0.1	0	А	0.19	0	А	
Smart Street (North)	0.39	2	А	0.32	1	А	
Smart Lane (West)	0.04	0	А	0.08	1	А	
Intersection	0.39		А	0.32		А	

Review of the above results shows that the intersection of Smart Street/Smart Lane is anticipated to operate under 'excellent' conditions in both the AM and PM peak periods with an LoS A.

	W	/eekday AN	N	Weekday PM			
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS	
Court Road (South)	0.89	62	E	0.89	96	E	
The Horsley Drive (South East)	0.88	156	D	0.92	190	D	
The Horsley Drive (North)	0.66	123	С	0.66	120	С	
Nelson Street (West)	0.83	64	E	0.85	45	E	
Intersection	0.89		D	0.92		D	

Table 5.10: Base Case Weekday Peak Conditions, Nelson Street/Horsley Drive/Court Road

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road is anticipated to operate 'fair' conditions during the AM peak hour and 'poor' conditions in the PM peak hour with both operating with an LoS D.

Table	5.11:	Base	Case	Weekday	Peak	Conditions,	Sackville	Street/Station
Street	t							

	V	/eekday AN	Л	Weekday PM			
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS	
Station Street (South)	0.72	57	D	0.95	163	E	
Sackville Street (East)	0.87	98	D	1.0+	249	F	
Station Street (North)	0.75	77	D	0.91	78	E	
Sackville Street (West)	1.0+	258	F	0.86	135	D	
Intersection	1.0+		Е	1.0+		E	

Review of the above results shows that the intersection of Sackville Street/Station Street is anticipated to operate under congested conditions during the peak hours, operating beyond capacity and under 'very poor' conditions with an LOS of E.

Under the base case conditions, i.e. with 10 years traffic volume growth of existing volumes, the intersection of Sackville Street/Station Street exceeds capacity and becomes oversaturated.

	V	/eekday AN	N	Weekday PM			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.	
The Horsley Drive (South)	0.59	0	А	0.78	0	А	
Cunninghame Street (West)	0.46	0	А	0.45	0	А	
The Horsley Drive (North)	1.0+	26	F	1.0+	11	F	
Intersection	1.0+		F			F	

Table 5.12: Existing Weekday Peak Conditions, Cunninghame Street/Horsley Drive

Review of the above results shows that the intersection of Cunninghame Street/The Horsley Drive currently operates under congested conditions during the AM peak and PM peak, operating under 'very poor' conditions, with a LoS of F. It should be noted that this is related to the low number of right turning vehicles which are opposed by the high quantum of through volumes on The Horsley Drive.

	W	/eekday AN	Л	Weekday PM			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.	
The Horsley Drive (South)	0.84	98	D	0.90	113	D	
Polding Street (East)	0.82	59	D	0.90	108	E	
The Horsley Drive (North)	0.86	130	Е	0.92	181	E	
Polding Street (West)	0.84	119	D	0.93	93	D	
Intersection	0.86		D	0.93		D	

Table 5.13: Existing Weekday Peak Conditions, Polding Street/Horsley Drive

Review of the above results shows that the intersection of The Horsley Drive/Polding Street currently operates under congested conditions during the AM peak and PM peak, operating under 'poor' conditions, with a LoS of D.

Results – Saturday Peak Hours Base Case Conditions

The base case Saturday peak hour results are summarised in Table 5.14 to Table 5.19.

Table 5.14: Base Case Saturday Peak Conditions, Nelson Street/ Station Street/Barbara Street

	Saturday Peak					
Approach	D.O.S.	95%ile Queue (m)	LOS			
Barbara Street (South)	0.81	114	D			
Nelson Street (East)	0.82	51	D			
Barbara Street (North)	0.79	55	E			
Nelson Street (West)	0.81	60	E			
Intersection	0.82		D			

Review of the above results shows that the intersection of Nelson Street/ Station Street/Barbara Street is anticipated to operate under 'good' conditions during the Saturday peak hour with an LoS of D.

	Saturday Peak					
Approach	D.O.S.	95%ile Queue (m)	LOS			
Nelson Street (East)	0.43	64	А			
Nelson Street (West)	0.30	13	А			
Intersection	0.43		А			

Table 5.15: Base Case Saturday Peak Conditions, Nelson Street/Ware Street

Review of the above results shows that the intersection of Nelson Street/Ware Street is anticipated to operate under 'excellent' conditions during the Saturday peak hour with an LoS of A.

Table 5.16: Base Case Saturday Peak Conditions, Nelson Street/Smart Street

	Saturday Peak					
Approach	D.O.S.	95%ile Queue (m)	LOS			
Smart Street (South)	0.42	39	E			
Nelson Street (East)	0.28	44	С			
Smart Street (North)	0.41	41	D			
Nelson Street (West)	0.42	37	С			
Intersection	0.42		D			

Review of the above results shows that the intersection of Nelson Street/Smart Street is anticipated to operate under 'excellent' conditions during the Saturday peak hour with an LoS of D.

 Table 5.17: Base Case Saturday Peak Conditions, Smart Street/Smart Lane

	Saturday Peak					
Approach	D.O.S.	95%ile Queue (m)	LOS			
Smart Street (South)	0.19	0	А			
Smart Street (North)	0.29	1	А			
Smart Lane (West)	0.08	1	А			
Intersection	0.29		А			

Review of the above results shows that the intersection of Smart Street/Smart Lane is anticipated to operate under 'excellent' conditions during the Saturday peak hour with an LoS of A.

Table	5.18:	Base	Case	Saturday	Peak	Conditions,	Nelson	Street/Horsley
Drive/	Court	Road						

	S	Saturday Peak					
Approach	D.O.S.	95%ile Queue (m)	LOS				
Court Road (South)	0.81	100	D				
Horsley Drive (Southeast)	0.80	84	D				
Horsley Drive (North)	0.47	72	С				
Nelson Street (West)	0.71	35	D				
Intersection	0.81		D				

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road is anticipated to operate under 'fair' conditions during the Saturday peak hour with an LoS of D.

Table 5.19: Base	Case	Saturday	Peak	Conditions,	Sackville	Street/Station
Street						

	S	aturday Pea	k
Approach	D.O.S.	95%ile Queue (m)	LOS
Station Street (South)	0.93	165	D
Sackville Street (East)	0.89	100	D
Station Street (North)	0.96	108	Е
Sackville Street (West)	0.95	173	E
Intersection	0.96		Е

Review of the above results shows that the intersection of Sackville Street/Station Street is operating under congested conditions during the Saturday peak hour, anticipated to operate under 'very poor' conditions with an LOS E under the base case.

Table5.20:BaseCaseWeekdayPeakConditions,CunninghameStreet/Horsley Drive

	Sa	iturday Pea	ak
Approach	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.43	0	А
Cunninghame Street (West)	0.40	0	А
The Horsley Drive (North)	1.0+	33	F
Intersection	1.0+		F

Review of the above results shows that the intersection of Cunninghame Street/The Horsley Drive currently operates under congested conditions during the Saturday peak hour, operating under 'very poor' conditions, with a LoS of F. It should be noted that this is related to the low number of right turning vehicles which are opposed by the high quantum of through volumes on The Horsley Drive.

Table 5.21: Base Case Weekday Peak Conditions, Polding Street/Horsley Drive

	Sa	turday Pea	ak
Approach	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.75	80	D
Polding Street (East)	0.75	61	D
The Horsley Drive (North)	0.74	102	D
Polding Street (West)	0.70	69	D
Intersection	0.75		D

Review of the above results shows that the intersection of The Horsley Drive/Polding Street currently operates under congested conditions during the Saturday peak hour, operating under 'fair conditions, with a LoS of D.

5.4 Future Volumes

The 2029 post-development road network volumes are calculated from the site-generated volumes (displayed previously in Figure 5-2 to Figure 5-4) plus the Base Case volumes (displayed previously in Figure 5-5 to Figure 5-7).

The resulting 2029 post-development road network volumes are displayed in Figure 5-8 and Figure 5-10.

5.5 External Intersection Operations

Based on the traffic volumes presented in Section 5.4, a post development, or future conditions assessment, of the identified external intersections to the site has been prepared. As previously noted, this assessment is based on the additional residential traffic volumes as the retail traffic volumes already exist on the road network and are already captured in the base case volumes.

The following summarises the SIDRA outputs for the AM, PM and Saturday peak hour with detailed SIDRA analyses in Appendix D.

Results – Weekday Peak Hours Future Conditions

The weekday AM and PM peak hour results are summarised in Table 5.22 to Table 5.27.

	M	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Barbara Street (South)	0.61	49	С	0.84	109	С
Nelson Street (East)	0.62	27	С	0.83	45	С
Station Street (North)	0.63	54	С	0.77	36	D
Nelson Street (West)	0.59	53	D	0.80	38	D
Intersection	0.63		с	0.84		D

Table5.22:FutureConditionsWeekdayPeakConditions,NelsonStreet/Station Street

Review of the above results shows that the intersection of Nelson Street/Station Street is anticipated to operate under 'excellent' conditions during the AM peak, and 'fair' conditions during the PM peak. The future intersection operations represent a moderate change to base case conditions with all movements operating within capacity.

Table5.23:FutureConditionsWeekdayPeakConditions,NelsonStreet/Ware Street

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Nelson Street (East)	0.15	25	А	0.33	48	А
Nelson Street (West)	0.21	15	А	0.18	8	А
Intersection	0.21		А	0.33		А

Review of the above results shows that the intersection of Nelson Street/Ware Street is anticipated to operate under 'excellent' conditions in both the AM and PM peak periods. The future intersection operations represent a minor change to base case conditions with all movements operating within capacity.

Table5.24:FutureConditionsWeekdayPeakConditions,NelsonStreet/Smart Street

	W	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Smart Street (South)	0.32	15	D	0.48	28	D
Nelson Street (East)	0.30	32	С	0.46	41	С
Smart Street (North)	0.48	41	С	0.47	34	D
Nelson Street (West)	0.46	32	С	0.32	30	С
Intersection	0.48		С	0.48		С

Review of the above results shows that the intersection of Nelson Street/Smart Street is anticipated to operate under 'excellent' conditions in both the AM and PM peak periods. The future intersection operations represent a moderate change to base case conditions with all movements operating within capacity.

Table	5.25:	Future	Conditions	Weekday	Peak	Conditions,	Smart
Street	/Smart	Lane					

	W	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Smart Street (South)	0.13	0	А	0.29	0	А
Smart Street (North)	0.46	3	А	0.42	9	А
Smart Lane (West)	0.19	2	А	0.67	14	В
Intersection	0.46		А	0.67		В

Review of the above results shows that the intersection of Smart Street/Smart Lane is anticipated to operate under 'excellent' conditions in the AM peak period and 'good' conditions in the PM peak period. The future intersection operations generally represent a moderate change to base case conditions. The operation of Smart Lane in the PM peak period represents the largest change in conditions however all movements operate within capacity.

Table	5.26:	Future	Conditions	Weekday	Peak	Conditions,	Nelson
Street	/Horsle	y Drive/C	ourt Road				

	W	/eekday AN	Л	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Court Road (South)	0.89	62	E	0.93	104	E
The Horsley Drive (South East)	0.92	173	D	0.90	181	D
The Horsley Drive (North)	0.68	129	С	0.67	122	С
Nelson Street (West)	0.86	77	E	0.83	50	E
Intersection	0.92		D	0.93		D

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road is anticipated to operate under 'fair' conditions during both the AM and PM peak hours. The future intersection operations represent a minor change to base case conditions with all movements operating within capacity.

	W	/eekday AN	Л	Weekday PM			
Approach	D.O.S.	95%ile Queue (m)	LOS	D.O.S.	95%ile Queue (m)	LOS	
Station Street (South)	0.78	64	D	0.94	177	E	
Sackville Street (East)	0.88	101	D	1.0+	280	F	
Station Street (North)	0.75	78	D	0.97	95	E	
Sackville Street (West)	1.0+	259	E	0.86	135	D	
Intersection	1.0+		D	1.0+	280	E	

Table 5.27: Future Conditions Weekday Peak Conditions, SackvilleStreet/Station Street

Review of the above results shows that the intersection of Station Street/Sackville Street is anticipated to operate under congested conditions in both the AM and PM peak periods.

Table 5.28: Future Weekday Peak Conditions, Cunninghame Street/Horsley Drive

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.49	5	А	0.47	49	А
Cunninghame Street (West)	0.46	0	А	0.45	0	А
The Horsley Drive (North)	0.34	3	В	0.49	3	С
Intersection	0.49		А	0.49		А

Review of the above results shows that the intersection of Cunninghame Street/The Horsley Drive currently operates under congested conditions during the AM peak and PM peak, operating under 'excellent' conditions, with a LoS of A.

It should be noted that this is related to the restriction of the intersection to left in/left out only which removes the existing right turning vehicles that were previously opposed by the high quantum of through volumes on The Horsley Drive.

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.92	120	D	0.97	120	E
Polding Street (East)	0.93	72	E	0.95	129	E
The Horsley Drive (North)	0.92	150	E	0.99	223	F
Polding Street (West)	0.87	137	D	0.95	105	D
Intersection	0.93		D	0.99		Е

Table 5.29: Future Weekday Peak Conditions, Polding Street/Horsley Drive

Review of the above results shows that the intersection of The Horsley Drive/Polding Street is expected to operate under congested conditions during the AM peak and PM peak, operating under 'poor' conditions, with a LoS of D & E.

Results – Saturday Peak Hours Future Conditions

The Saturday peak hour results are summarised in Table 5.30 to

15881T REP05 F01 / April 2020

Table 5.34.

	Saturday Peak			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	
Barbara Street (South)	0.90	109	D	
Nelson Street (East)	0.88	51	С	
Barbara Street (North)	0.86	48	D	
Nelson Street (West)	0.91	51	D	
Intersection	0.91		D	

Table 5.30: Future Conditions Saturday Peak Conditions, Nelson Street/Station Street/Barbara Street

Review of the above results shows that the intersection of Nelson Street/ Station Street/Barbara Street is anticipated to operate under 'fair' conditions during the Saturday peak hour. The future intersection operations represent a minor change to base case conditions with all movements operating within capacity.

Table 5.31: Future Conditions Saturday Peak Conditions, Nelson Street/Ware Street

	Saturday Peak			
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	
Nelson Street (East)	0.39	46	А	
Nelson Street (West)	0.31	16	А	
Intersection	0.39		А	

Review of the above results shows that the intersection of Nelson Street/Ware Street is anticipated to operate under 'excellent' conditions during the Saturday peak hour. The future intersection operations represent a moderate change to base case conditions with all movements operating within capacity.
Table	5.32:	Future	Conditions	Saturday	Peak	Conditions,	Nelson
Street	/Smart	Street					

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Smart Street (South)	0.42	28	D		
Nelson Street (East)	0.29	33	С		
Smart Street (North)	0.43	31	D		
Nelson Street (West)	0.42	29	С		
Intersection	0.43		С		

Review of the above results shows that the intersection of Nelson Street/Smart Street is anticipated to operate under 'excellent' conditions during the Saturday peak hour. The future intersection operations represent a moderate change to base case conditions with all movements operating within capacity.

Table 5.33: Future Conditions Saturday Peak Conditions, Smart Street/Smart Lane

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Smart Street (South)	0.29	0	А		
Smart Street (North)	0.41	8	А		
Smart Lane (West)	0.66	14	В		
Intersection	0.66		А		

Review of the above results shows that the intersection of Nelson Smart Street/Smart Lane is anticipated to operate under 'excellent' conditions during the Saturday peak hour. The future intersection operations generally represent a moderate change to base case conditions. The operation of Smart Lane represents the largest change in conditions however all movements operate within capacity.

Saturday Peak	S	aturday Pea	.k
	D.O.S.	95%ile Queue (m)	L.O.S.
Court Road (South)	0.86	108	D
Horsley Drive (Southeast)	0.83	87	D
Horsley Drive (North)	0.47	72	С
Nelson Street (West)	0.77	45	D
Intersection	0.86		D

Table5.34:FutureConditionsSaturdayPeakConditions,NelsonStreet/Horsley Drive/Court Road

Review of the above results shows that the intersection of Nelson Street/Horsley Drive/Court Road is anticipated to operate under 'fair' conditions during the Saturday peak hour. The future intersection operations represent a moderate change to base case conditions with all movements operating within capacity.

Table 5.35: Future Saturday Peak Conditions, Sackville Street/Station Street

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Station Street (South)	0.95	178	E		
Sackville Street (East)	0.92	110	D		
Station Street (North)	0.98	119	Е		
Sackville Street (West)	0.93	165	E		
Intersection	0.98		E		

Review of the above results shows that the intersection of Sackville Street/Station Street is anticipated to operate under congested conditions in the future scenario during the Saturday peak hour.

Table 5.36: Future Saturday Peak Conditions,	Cunninghame Street/Horsley
Drive	

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
The Horsley Drive (South)	0.54	0	А		
Cunninghame Street (West)	0.40	0	А		
The Horsley Drive (North)	0.32	3	В		
Intersection	0.54		А		

Review of the above results shows that the intersection of Cunninghame Street/The Horsley Drive currently operates under congested conditions during the Saturday peak hour, operating under 'excellent' conditions, with a LoS of A.

It should be noted that this is related to the restriction of the intersection to left in/left out only which removes the existing right turning vehicles which are opposed by the high quantum of through volumes on The Horsley Drive.

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
The Horsley Drive (South)	0.85	97	D		
Polding Street (East)	0.83	73	D		
The Horsley Drive (North)	0.86	137	E		
Polding Street (West)	0.72	72	D		
Intersection	0.86		D		

Table 5.37: Future Saturday Peak Conditions, Polding Street/Horsley Drive

Review of the above results shows that the intersection of The Horsley Drive/Polding Street currently operates under congested conditions during the Saturday peak hour, operating under 'fair' conditions, with a LoS of D.

5.6 Road Network Improvements

Sackville Street/Station Street Intersection

Whilst the future conditions assessment indicates the intersection of Sackville Street and Station Street will exceed capacity, it is noted that the intersection is already expected to exceed capacity under base case conditions i.e. without the additional traffic associated with the Fairfield Forum.

In order to improve intersection operation and reduce delays through the Station Street and Sackville Street intersection, it is possible to increase the effective length of the second traffic lane on the north-west approach to Station Street from 26 metres to 71 metres, as illustrated in Figure 5-11 and Appendix F.

Figure 5-11: Proposed Intersection Layout, Station Street/Sackville Street

In order to achieve the lengthened lane to Station Street displayed in the intersection layout above, it is proposed to remove kerbside car parking as displayed in Figure 5-12.

Source: google.com/maps

As this length of kerbside car parking on Station Street includes two double-width crossovers and two single-width crossovers, the effective kerbside car parking length is just 18 metres. As such, increasing the length of the through lane to Station Street by 44 metres results in the loss of a maximum of 2 to 3 kerbside car parking spaces, and improves the efficiency of the Station Street/Sackville Street intersection to better accommodate growth in traffic in the area.

The results of the SIDRA intersection analysis for future volumes displayed previously, applied to the proposed future intersection layout including the extended lane length are displayed in Table 5.38 and Table 5.39 below.

Table 5.38: Future Conditions Weekday Peak Conditions,	Modified Sackville
Street/Station Street	

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Station Street (South)	0.77	64	D	0.94	160	E
Sackville Street (East)	0.78	88	D	0.92	175	D
Station Street (North)	0.72	83	D	0.93	87	E
Sackville Street (West)	0.87	188	D	0.83	131	D
Intersection	0.87		D	0.94		D

 Table 5.39: Future Conditions Saturday Peak Conditions, Modified Sackville

 Street/Station Street

	Weekday AM				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Station Street (South)	0.93	169	D		
Sackville Street (East)	0.90	102	D		
Station Street (North)	0.75	84	D		
Sackville Street (West)	0.86	143	D		
Intersection	0.93		D		

Review of the above results shows that the intersection of Sackville Street/Station Street is anticipated to operate under 'fair' conditions when considering the future traffic volumes and extended turn lane length on the north-west approach.

It is noted that the future conditions, with the amended north-west approach, result in intersection operating conditions that are better than base case conditions and are comparable to existing conditions. As such, the proposed lane extension provides an improvement greater than the impact of the additional volumes generated by the Fairfield Forum.

The current intersection operates with split phasing due to the intersection geometry, the introduction of leading right turns or double diamond phasing at the intersection would likely improve intersection efficiency. Additionally, the extension of 'no stopping' restrictions along Station Street to the site would likely improve intersection operations, at the expense of existing resident on street parking. These modifications have been identified by RMS.

A concept intersection design has been prepared of this modification and is attached as Appendix F. As illustrated in this concept plan, the modifications identified by RMS would require the acquisition of private land to accommodate the simultaneous movement of turning vehicles associated with double diamond phasing.

Given that the intersection is anticipated to operate appropriately with minor modifications, i.e. extended turn lane on the northern leg, and the above noted impacts to surrounding land holders, it is considered that the identified modifications are not warranted at this time.

The Horsley Street/Polding Street Intersection

The intersection of The Horsley Drive and Polding Street is anticipated to operate within capacity under future conditions, however the PM peak hour operations are essentially considered to be operating at capacity.

Having regard to the surrounding road network existing conditions it is noted that opportunity exists to extend the right turn lanes on The Horsely Drive through amended line marking of the existing right turn lanes. The modified line marking seeks to increase the effective storage length of the turn lanes by reducing the extent of existing chevron line marking. This is enabled by the limiting of the intersection with Cunninghame Street further to the south to left in/left out only.

The extension of the right tun lanes through line marking results in the turn lane lengths of:

- Southern approach: 125m
- Northern approach: 90m

Modification of the turn lane lengths results in the intersection operating characteristics as summarised in Figure and as attached in Appendix F.

Figure 5-13: Proposed Intersection Layout, Polding Street/The Horsley Drive

Table	5.40:	Future	Weekday	Peak	Conditions,	Modified	Polding
Street	/Horsle	y Drive					

Weekday AM			V	Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
The Horsley Drive (South)	0.88	207	D	0.88	183	D
Polding Street (East)	0.84	100	D	0.90	106	D
The Horsley Drive (North)	0.87	220	E	0.87	220	E
Polding Street (West)	0.86	204	D	0.86	205	D
Intersection	0.88		D	0.90		D

Table	5.41:	Future	Saturday	Peak	Conditions,	Modified	Polding
Street	/Horsle	y Drive					

	Saturday Peak				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
The Horsley Drive (South)	0.85	168	D		
Polding Street (East)	0.84	120	D		
The Horsley Drive (North)	0.85	212	E		
Polding Street (West)	0.70	115	D		
Intersection	0.85		D		

Review of the above results shows that the modified intersection of The Horsley Drive/Polding Street with extended turn lanes would be expected to operate under 'fair' conditions during the weekday and Saturday peak hour, with a LoS of D. This is generally in line with the existing intersection operations and is considered and appropriate outcome.

Nelson Street/Station Street Intersection

The current intersection operates with split phasing due to the intersection geometry, The introduction of leading right turns or double diamond phasing at the intersection would likely improve intersection efficiency, as would the construction of a left turn slip lane into Station Street from Nelson Street (west). These improvements have been identified by RMS.

A concept intersection design has been prepared of these modifications and is attached as Appendix F. As illustrated in this concept plan, the modifications identified by RMS would require the acquisition of private land and the loss of public open space.

Given that the intersection is anticipated to operate appropriately under existing conditions, i.e. without the modifications, and the above noted impacts to surrounding land holders, it is considered that the identified modifications are not warranted at this time.

Results Summary

Based on the above, it is anticipated that sufficient capacity exists within the assessed external intersections to accommodate the traffic generated by the proposed Fairfield Forum development.

5.7 Ware Street

The proposal includes the extension of the existing Ware Street to Station Street via the creation of a new public road as illustrated in Figure 5-14.

Figure 5-14: Proposed Ware Street Extension to Station Street

Ware Street, including the proposed extension of Ware Street to Station Street, will provide access to a number of car parks for both the residential and retail components of the development.

The location of the Ware Street intersection with Station Street is approximately 140m north of Nelson Street. As summarised in Table 5.22 and Table 5.30, the 95th percentile queue on the northern leg of the Station Street/Nelson Street intersection is 54m. The proposed intersection location is therefore clear of external road network queuing allowing the intersection to operate without downstream constraints.

A SIDRA assessment of the Ware Street intersections with Cunninghame Street (existing) and Station Street (proposed) has been undertaken based on the future traffic volumes previously identified in Figure 5-8 and Figure 5-10.

It is noted that this assessment includes the traffic volumes generated by both the residential <u>and</u> retail components of the Fairfield Forum as the consolidation of retail access points from existing conditions results in a redistribution of retail traffic. The resulting SIDRA intersection operating characteristics are summarised in Table 5.42 to Table 5.45 with detailed outputs included in Appendix E.

Table5.42:FutureConditionsWeekdayPeakConditions,WareStreet/CunninghameStreet

	W	/eekday AN	Л	V	/eekday PN	Л
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Ware Street (South)	0.27	9	А	0.47	23	А
Cunninghame Street (East)	0.06	0	А	0.18	0	А
Cunninghame Street (West)	0.08	1	А	0.14	5	А
Intersection	0.27		а	0.47		А

Table5.43:FutureConditionsSaturdayPeakConditions,WareStreet/CunninghameStreet

	Weekday AM				
Approach	D.O.S.	95%ile Queue (m)	L.O.S.		
Ware Street (South)	0.48	25	А		
Cunninghame Street (East)	0.17	0	А		
Cunninghame Street (West)	0.13	5	А		
Intersection	0.48		А		

A review of the above assessments indicates that the intersection of Ware Street and Cunninghame Street will operate under 'excellent' conditions with an LOS A under future conditions for the AM, PM and Saturday peak hours.

It is therefore considered that sufficient capacity exists within the Cunninghame Street and Ware Street intersection to accommodate the additional traffic generated by the Fairfield Forum.

Table5.44:FutureConditionsWeekdayPeakConditions,WareStreet/Station Street

	Weekday AM			Weekday PM		
Approach	D.O.S.	95%ile Queue (m)	L.O.S.	D.O.S.	95%ile Queue (m)	L.O.S.
Station Street (South)	0.19	7	А	0.55	34	А
Ware Street (East)	0.33	12	А	0.57	28	А
Station Street (North)	0.25	0	А	0.28	0	А
Intersection	0.33		А	0.57		А

Table5.45:FutureConditionsWeekdayPeakConditions,WareStreet/Station Street

	V	/eekday AM	N
Approach	D.O.S.	95%ile Queue (m)	L.O.S.
Station Street (South)	0.57	33	А
Ware Street (East)	0.68	37	В
Station Street (North)	0.33	0	А
Intersection	0.68		А

A review of the above assessments indicates that the new intersection of Ware Street and Station Street will operate under 'excellent' conditions with an LOS A under future conditions for the AM, PM and Saturday peak hours.

It is therefore considered that sufficient capacity exists within the proposed Station Street and Ware Street intersection to accommodate the additional traffic generated by the Fairfield Forum.

6.1 DCP Parking Rates

Table 1 of Chapter 12 to the Fairfield Citywide Development Control Plan sets out the minimum parking requirement rates for proposed development within Fairfield.

In conjunction with this, Appendix 5 of the Fairfield City Centre DCP 2013 sets out specific minimum rates for developments identified as being located within the Fairfield Town Centre.

As previously identified, the subject site is situated within the Fairfield Town centre and is subject to the rates as set out within Appendix 5 of the Fairfield City Centre DCP 2013 and as summarised in Table 6.1.

Table 6.1: DCP Minimum Car Parking Rates

Use		DCP Minimum Car Parking Rate
Retail		1 space per 25 sqm gross leasable area
	1 - 2 bedroom unit	1 car space per dwelling
Dwellings	3 or more bedrooms	1.5 car spaces per dwelling
	Visitors	0.25 car spaces per dwelling

The above car parking rates are the current minimum car parking supply rates set out by Council, and any reduction in these rates is subject to Council consent.

Application of the DCP parking rates to the Master Plan development schedules results in the parking allocations as summarised in Table 6.2.

 Table 6.2: DCP Minimum Car Parking Allocation

Use		Schedule DCP Parking Rate		Parking
Retail		17,593sqm	1 space per 25 sqm gross leasable area	704 spaces
	1 - 2 bedrooms	1,310 no.	1 car space per dwelling	1,310 spaces
Dwellin gs	3 or more bedrooms	179 no.	1.5 car spaces per dwelling	269 spaces
	Visitors	1,489 no.	0.25 car spaces per dwelling	373 spaces
		Total		2,656 spaces

Previously prepared Master Plans for the proposal indicate the potential to deliver in the order of 2,900 on-site parking spaces which is in excess of the minimum requirement of 2,656 spaces when the DCP parking rates in Table 6.1 are applied to the development summary.

6.2 Parking Limitation Opportunities

Whilst acknowledging the above minimum DCP parking rates, the subject site is situated within the Fairfield Town Centre with excellent connectivity to surrounding land uses and to a variety of public transport options.

Developments situated in activity centre locations are typically able to operate with reduced parking provisions due to the increased likelihood of multi-purpose trips to the site, in conjunction with a variation in parking demand between uses over the course of a typical day, and week.

RMS Car Parking Data

With consideration to the parking requirements of the proposed residential dwellings, it is noted that within the 2013 update to the *RMS Guide to Traffic Generating Development*, surveys of high density residential dwellings within Sydney metropolitan areas indicated the following rates of car parking provision and occupancy:

- Average car parking *provision* rate of 1.31 per dwelling. Note that this provision rate is irrespective of the number of rooms within a dwelling and is inclusive of visitor parking.
- Average car park occupancy rate of 65%.

Based on these rates, it is therefore noted that high density residential dwellings, similar to those proposed, typically generate an average parking demand of 0.85 spaces per dwelling (1.31×0.65). This is not to say that an average parking rate of 0.85 spaces/dwelling is proposed, but rather an indication that developments of this nature can generate lower car parking demands than those set out in the DCP.

ABS Census Car Ownership

With consideration to the parking requirements of the proposed residential dwellings, additional guidance has been taken from the car ownership data contained within the Australian Bureau of Statistics 2016 national census. A summary of the average car ownership rates for apartment type dwellings in Fairfield and similar surrounding town centres is provided as Table 6.3.

Location	1 Bedroom Apartments	2 Bedroom Apartments	3 Bedroom Apartments
Fairfield	0.70	0.93	1.23
Cabramatta	0.58	0.93	1.20
Liverpool	0.72	1.03	1.40
Paramatta	0.53	0.91	1.16
Average	0.63	0.95	1.25

Tuble viol Abo belibus Loro Apul tillent Aveluge our ownership butu

A review of the above data indicates that a significant proportion of apartment type dwellings in Fairfield and the surrounding areas currently have reduced car ownership below the DCP rates, and indeed, a number of dwellings do not even own a vehicle. This data again provides an indication that developments of this nature can generate lower car parking demands than the rates set out in the DCP.

Parking Limitation Summary

In light of the preceding it is considered that, based on the location of the site in the context of a walkable town centre with rail and bus connections, and the available RMS and ABS data, opportunity exists for the subject site to operate with reduced car parking ratios from those set out within the DCP.

To support the potential reduction in car parking supply ratios for residential dwellings, additional opportunities to provide on-site car share schemes or additional bicycle parking beyond the minimum requirements in high quality bicycle compounds would be required. Similarly, reduced car parking rates would be informed by the preparation of a Green Travel Plan (GTP) that would set out the alternate transport opportunities provided by the development and the location within the Town Centre.

Any reduction in car parking supply rates, and the inclusion of associated supporting initiatives will be further investigated when detailed site analysis and design is undertaken at a later date. It is noted that any reduction in the DCP parking rates remains subject to Council consent.

7.1 DCP Bicycle Parking Requirements

Section 5.2.3 of the Fairfield City Centre DCP 2013 sets out specific minimum bicycle parking rates for developments identified as being located within the Fairfield Town Centre.

As previously identified, the subject site is situated within the Fairfield Town centre and is subject to the rates as set out within Section 5.2.3 of the Fairfield City Centre DCP 2013 and as summarised in Table 6.1.

Table 7.1: DCP Minimum Car Parking Rates

Use	DCP Minimum Car Parking Rate
Retail	1 space per 300 sqm
Dwellings	1 space per 3 dwellings

The above bicycle parking rates are the current minimum supply rates set out by Council, and any change in these rates is subject to Council consent.

Application of the DCP bicycle parking rates to the Master Plan development schedules results in the parking allocations as summarised in Table 7.2.

Table 7.2: DCP Minimum Bicycle Parking Allocation

Use	Schedule	DCP Parking Rate	Parking		
Retail	17,593sqm	1 space per 300 sqm	58 spaces		
Dwellings	1,489 no.	1 bicycle space per 3 dwellings	496 spaces		
	554 spaces				

It is noted that Section 5.2.3 (b) the DCP states that for residential bicycle parking "This requirement will be waived if the applicant can demonstrate that each residential unit has sufficient storage within the garage for a bicycle and the required number of vehicles and that there is a safe path for cyclists to leave the garage area."

It is therefore expected that bicycle parking associated with the proposal will comprise a number of solutions including:

- Secure bicycle parking areas within lockable compounds located conveniently to building access locations generally as per AS2890.3;
- Resident bicycle parking within appropriately sized storage cages; and
- Bicycle hoops located at grade throughout the development to cater for visitors to the site.

It is expected that the exact locations and layout of these bicycle facilities will be determined in the next stage of the project.

8 **Conclusion:**

Based on the preceding assessment, the following summary of the proposed Fairfield Forum development is provided:

- The proposal seeks to redevelop the existing retail site to provide a mixed-use precinct comprising the retention of the existing retail floor area with in the order of 1,489 new residential dwellings, a new open space, a pedestrian mall and new basement car parking.
- The subject site is situated within a highly walkable precinct, with many facilities (education, retail, commercial, community, etc) situated within close proximity to the site. The location of the site within the surrounding precinct subsequently supports walking as a viable alternative means of transport to private vehicle.
- The subject site is serviced by multiple public transport options that will provide a viable alternative means of transport to private vehicle.
- Retail traffic as generated by the proposal is anticipated to be in line with existing conditions as the retail floor area is not increasing.
- Traffic generation data from a number of sources have been reviewed to identify applicable rates, however, for the purposes of presenting a robust assessment, the Council specified traffic generation rates of 0.3 movements/dwelling in a peak hour, and 2 movement/dwelling per day, have been adopted.
- Based on the Council specified traffic generation rates, the residential aspect of the development generates up to 447vph during the peak hours, and up to 2,978vpd.
- Traffic distribution, generation and growth assumptions have been adopted as per the agreed position with Council as set out in the Ratio Modelling Assumptions Report.
- An intersection capacity assessment has been undertaken during the weekday AM and PM, and Saturday peak hours for the intersections of:
 - o Nelson Street / The Horsley Drive / Court Road;
 - o Nelson Street / Smart Street;
 - o Nelson Street / Ware Street;
 - o Nelson Street / Station Street;
 - o Sackville Street / Station Street;
 - o Cunninghame Street / The Horsley Drive; and
 - Polding Street / The Horsley Drive.
- The SIDRA assessment indicates that the assessed intersections will largely continue to operate within capacity when considering the additional traffic generated by the residential component of the proposal.
- The intersection of Station Street/Sackville Street is identified as exceeding capacity under base case conditions and would require modifications irrespective of the additional residential traffic. Increases to lane lengths at the intersection will increase capacity to accommodate existing and future traffic volumes.
- Based on the location of the site within Fairfield Town Centre in conjunction with supporting case study data, it is considered that opportunity may exist for the site to operate with a reduced provision of on-site parking than specified within the DCP rates, subject to Council consent.

Appendix A Existing Conditions Traffic Volumes:

r:

= - 1**Existing Conditions SIDRA Results** Appendix B

r:

SITE LAYOUT

Site: 101 [EX AM Nelson/Station/Barbara]

New Site Site Category: (None) Signals - Fixed Time Isolated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Created: Friday, 16 April 2021 2:08:53 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

MOVEMENT SUMMARY

Site: 101 [EX AM Nelson/Station/Barbara]

New Site

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov D	Turn	Demand I	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba	ack of	Prop.	Effective	Aver.	Averag
		Total	ΗV	Total	ΗV	Call	Delay	0011100	Vehicles E	Distance	Quodod	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			,	km/h
South: Barba		ara Street												
1	L2	98	0.0	98	0.0	0.511	40.1	LOS D	5.9	41.6	0.92	0.78	0.92	15.1
2	T1	126	0.0	126	0.0	0.511	36.7	LOS D	5.9	41.6	0.92	0.78	0.92	28.2
3	R2	91	0.0	91	0.0	0.141	16.5	LOS B	1.3	9.0	0.68	0.68	0.68	29.5
Appro	bach	315	0.0	315	0.0	0.511	31.9	LOS C	5.9	41.6	0.85	0.75	0.85	23.5
East:	Nelso	n Street												
4	L2	192	5.0	192	5.0	0.243	14.8	LOS B	2.3	16.8	0.43	0.62	0.43	31.2
5	T1	148	5.0	148	5.0	0.524	24.6	LOS C	3.0	22.1	0.69	0.56	0.69	13.1
6	R2	9	5.0	9	5.0	0.044	50.9	LOS D	0.3	2.1	1.00	0.68	1.00	20.2
Appro	bach	349	5.0	349	5.0	0.524	20.0	LOS B	3.0	22.1	0.56	0.59	0.56	25.7
North	: Statio	on Street												
7	L2	33	5.0	33	5.0	0.026	4.2	LOS A	0.1	0.9	0.20	0.48	0.20	36.7
8	T1	234	5.0	234	5.0	0.524	34.0	LOS C	6.0	43.5	0.90	0.75	0.90	29.2
9	R2	58	5.0	58	5.0	0.124	33.9	LOS C	1.3	9.7	0.80	0.70	0.80	23.9
Appro	bach	324	5.0	324	5.0	0.524	31.0	LOS C	6.0	43.5	0.81	0.71	0.81	28.8
West	: Nelso	on Street												
10	L2	26	5.0	26	5.0	0.348	41.5	LOS D	2.4	17.5	0.93	0.79	1.17	23.0
11	T1	174	5.0	174	5.0	0.348	41.2	LOS D	2.7	19.8	0.94	0.77	1.04	5.4
12	R2	105	5.0	105	5.0	0.489	50.1	LOS D	3.1	22.4	0.98	0.78	0.98	20.5
Appro	bach	305	5.0	305	5.0	0.489	44.3	LOS D	3.1	22.4	0.95	0.77	1.03	14.9
All Ve	hicles	1294	3.8	1294	3.8	0.524	31.4	LOS C	6.0	43.5	0.78	0.71	0.80	24.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	158	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Processed: Tuesday, 13 April 2021 3:12:27 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

PHASING SUMMARY

Site: 101 [EX AM Nelson/Station/Barbara]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	79	0	29	61
Green Time (sec)	15	23	26	12
Phase Time (sec)	21	29	32	18
Phase Split	21%	29%	32%	18%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Processed: Tuesday, 13 April 2021 3:12:27 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

SITE LAYOUT

Site: 104 [EX AM Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Created: Friday, 16 April 2021 2:09:00 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

MOVEMENT SUMMARY

Site: 104 [EX AM Nelson/Horsely/Court]

中 Network: N101 [EX AM]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	Turn	Demand F	lows	Arrival F	lows	Deg. Satn	Average Delay	Level of Service	Aver. B	ack of	Prop.	Effective	Aver. /	Averag
		Total	ΗV	Total	ΗV	Oatri	Delay		Vehicles	Distance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Cour	t Road												
21	L2	46	5.0	46	5.0	0.838	65.8	LOS E	8.0	58.2	1.00	1.00	1.24	10.1
22	T1	159	5.0	159	5.0	0.838	62.4	LOS E	8.0	58.2	1.00	1.00	1.24	10.1
23b	R3	149	5.0	149	5.0	0.724	62.0	LOS E	5.5	40.2	1.00	0.87	1.11	23.1
Appro	bach	355	5.0	355	5.0	0.838	62.6	LOS E	8.0	58.2	1.00	0.95	1.19	16.6
South	nEast: `	The Horsle	y Driv	е										
4b	L3	11	5.0	11	5.0	0.303	24.1	LOS C	5.7	41.8	0.61	0.73	0.61	36.8
4a	L1	273	5.0	273	5.0	0.303	22.1	LOS C	5.7	41.8	0.61	0.73	0.61	34.9
6a	R1	1015	5.0	1015	5.0	0.837	49.8	LOS D	18.3	133.5	0.99	0.94	1.10	23.0
Appro	bach	1298	5.0	1298	5.0	0.837	43.8	LOS D	18.3	133.5	0.91	0.89	0.99	24.9
North	: The ł	Horsely Driv	ve											
27a	L1	1156	5.0	1154	5.0	0.589	20.8	LOS C	14.0	102.4	0.66	0.78	0.66	41.7
28	T1	162	5.0	162	5.0	0.486	48.8	LOS D	5.8	42.2	0.94	0.79	0.94	23.3
29	R2	189	5.0	189	5.0	0.486	52.1	LOS D	5.8	42.2	0.94	0.80	0.94	18.0
Appro	bach	1507	5.0	1506 ^{N1}	5.0	0.589	27.8	LOS C	14.0	102.4	0.73	0.78	0.73	36.4
West	: Nelso	n Street												
30	L2	95	5.0	95	5.0	0.845	58.9	LOS E	8.1	59.0	1.00	1.03	1.40	6.9
32a	R1	337	5.0	337	5.0	0.845	61.8	LOS E	8.1	59.0	1.00	1.02	1.31	21.9
Appro	bach	432	5.0	432	5.0	0.845	61.1	LOS E	8.1	59.0	1.00	1.02	1.33	19.5
All Ve	hicles	3592	5.0	<mark>3590</mark> ^{N1}	5.0	0.845	41.0	LOS D	18.3	133.5	0.85	0.87	0.94	27.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	c of Queue Distance m	Prop. Queued	Effective Stop Rate				
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95				
All Pe	destrians	211	54.3	LOS E			0.95	0.95				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
PHASING SUMMARY

Site: 104 [EX AM Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Split Phasing Reference Phase: Phase C Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary				
Phase	Α	В	С	D
Phase Change Time (sec)	52	98	0	22
Green Time (sec)	40	16	16	24
Phase Time (sec)	46	22	22	30
Phase Split	38%	18%	18%	25%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

V Site: 101 [EX AM Smart Lane]

New Site Site Category: (None) Giveway / Yield (Two-Way)

V Site: 101 [EX AM Smart Lane]

中 Network: N101 [EX AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	ovement Performance - Vehicles ov Turn Demand Flows Arrival Flows Deg Average Level of Aver Back of Prop Effective Aver Average													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Queu	ick of Ie	Prop. Queued	Effective Stop	Aver No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles D	istance		Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sma	rt Street												
1	L2	28	5.0	28	5.0	0.100	3.7	LOS A	0.0	0.0	0.00	0.09	0.00	55.7
2	T1	159	5.0	159	5.0	0.100	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	51.4
Appro	oach	187	5.0	187	5.0	0.100	0.6	NA	0.0	0.0	0.00	0.09	0.00	54.1
North	n: Smai	t Street												
8	T1	414	5.0	414	5.0	0.382	0.2	LOS A	0.2	1.8	0.11	0.07	0.11	56.0
9	R2	55	5.0	55	5.0	0.382	6.4	LOS A	0.2	1.8	0.11	0.07	0.11	55.4
Appro	oach	468	5.0	468	5.0	0.382	0.9	NA	0.2	1.8	0.11	0.07	0.11	55.9
West	: Smar	t Lane												
10	L2	20	5.0	20	5.0	0.036	6.1	LOS A	0.0	0.4	0.25	0.58	0.25	49.0
12	R2	11	5.0	11	5.0	0.036	8.7	LOS A	0.0	0.4	0.25	0.58	0.25	49.0
Appro	oach	31	5.0	31	5.0	0.036	7.0	LOS A	0.0	0.4	0.25	0.58	0.25	49.0
All Ve	ehicles	686	5.0	686	5.0	0.382	1.1	NA	0.2	1.8	0.08	0.10	0.08	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

∇ Site: 101 [EX AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

V Site: 101 [EX AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	ovement Performance - Vehicles													
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Queu	ck of e	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles D veh	istance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	54	0.0	54	0.0	0.476	5.6	LOS A	0.0	0.0	0.00	0.05	0.00	58.6
2	T1	1357	5.0	1357	5.0	0.476	0.1	LOS A	0.0	0.0	0.00	0.02	0.00	59.2
Appro	bach	1411	4.8	1411	4.8	0.476	0.3	NA	0.0	0.0	0.00	0.02	0.00	59.2
North	: The H	Horsley Driv	ve (N)											
8	T1	1589	5.0	1589	5.0	0.421	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1589	5.0	1589	5.0	0.421	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame S	treet											
10	L2	60	0.0	60	0.0	0.116	9.5	LOS A	0.1	1.0	0.56	0.77	0.56	28.3
12	R2	13	0.0	13	0.0	1.173	793.2	LOS F	1.8	12.7	1.00	1.16	1.78	0.6
Appro	bach	73	0.0	73	0.0	1.173	145.8	LOS F	1.8	12.7	0.64	0.84	0.77	3.1
All Ve	hicles	3073	4.8	3073	4.8	1.173	3.6	NA	1.8	12.7	0.02	0.03	0.02	47.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: 101 [EX AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 101 [EX AM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand I	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles [veh	Distance m		Rate	Cycles S	Speed km/h
South	n: The	Horsley Dri	ve (S)											
1	L2	292	0.0	292	0.0	0.188	8.7	LOS A	2.7	18.9	0.28	0.63	0.28	48.0
2	T1	719	5.0	719	5.0	0.564	40.0	LOS D	12.2	88.8	0.87	0.76	0.87	29.4
3	R2	275	0.0	275	0.0	0.842	72.9	LOS E	12.1	85.0	1.00	0.92	1.17	20.4
Appro	oach	1285	2.8	1285	2.8	0.842	39.9	LOS D	12.2	88.8	0.76	0.76	0.80	29.2
East:	Poldin	g Street (E)											
4	L2	332	0.0	332	0.0	0.419	23.4	LOS C	7.7	54.0	0.67	0.76	0.67	34.4
5	T1	318	0.0	318	0.0	0.822	70.8	LOS E	8.5	59.3	1.00	0.92	1.21	27.9
Appro	oach	649	0.0	649	0.0	0.822	46.6	LOS D	8.5	59.3	0.83	0.84	0.94	29.8
North	h: The H	lorsley Driv	ve (N)											
7	L2	35	0.0	35	0.0	0.831	65.2	LOS E	15.9	115.9	1.00	0.95	1.11	29.8
8	T1	675	5.0	675	5.0	0.831	59.3	LOS E	15.9	115.9	0.99	0.95	1.11	20.6
9	R2	83	0.0	83	0.0	0.579	75.6	LOS E	3.5	24.6	1.00	0.78	1.01	26.4
Appro	oach	793	4.3	793	4.3	0.831	61.3	LOS E	15.9	115.9	0.99	0.93	1.10	22.0
West	: Poldir	ng Street (V	V)											
10	L2	18	0.0	18	0.0	0.591	35.5	LOS D	15.7	109.7	0.80	0.72	0.80	39.5
11	T1	493	0.0	493	0.0	0.591	30.0	LOS C	15.7	109.7	0.80	0.72	0.80	40.2
12	R2	465	0.0	465	0.0	0.801	45.0	LOS D	16.0	112.1	0.98	0.90	1.06	24.6
Appro	oach	976	0.0	976	0.0	0.801	37.2	LOS D	16.0	112.1	0.89	0.81	0.93	33.5
All Ve	ehicles	3703	1.9	3703	1.9	0.842	45.0	LOS D	16.0	115.9	0.86	0.82	0.92	28.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate						
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
All Pe	destrians	158	64.3	LOS F			0.96	0.96						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

PHASING SUMMARY

Site: 101 [EX AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	40	86	109	126
Green Time (sec)	34	40	17	11	8
Phase Time (sec)	40	46	23	17	14
Phase Split	29%	33%	16%	12%	10%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

V Site: 101 [EX AM Cunninghame/Smart]

New Site Site Category: (None) Roundabout

V Site: 101 [EX AM Cunninghame/Smart]

中 Network: N101 [EX AM]

New Site Site Category: (None) Roundabout

Mov	ovement Performance - Vehicles ov Turn Demand Flows Arrival Flows Deg Average Level of Aver Back of Prop Effective Aver Averag													
Mov ID	Turn	Demand F	lows .	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bac Queue	k of	Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total	HV	Total	ΗV				Vehicles Dis	stance		Rate	Cycles S	Speed
Sout	o: Smo	veh/h	<u>%</u>	veh/h	%	v/c	sec		veh	m				km/h
3000	ו. סווומ ער	10)	40	0.0	0 125	47	1084	0.2	1 1	0.10	0.52	0.19	51.6
1 2	LZ T4	40	0.0	40	0.0	0.125	4.7	LOSA	0.2	1.1	0.10	0.00	0.10	51.0
2		01	0.0	01	0.0	0.125	4.7	LOSA	0.2	1.1	0.10	0.55	0.10	55.0
3	R2	20	0.0	20	0.0	0.125	8.5	LUSA	0.2	1.1	0.18	0.53	0.18	44.1
Appr	oach	147	0.0	147	0.0	0.125	5.4	LOSA	0.2	1.1	0.18	0.53	0.18	51.8
East:	Cunnii	nghame Sti	reet (E)										
4	L2	22	0.0	22	0.0	0.083	5.9	LOS A	0.1	0.8	0.37	0.61	0.37	33.9
5	T1	49	0.0	49	0.0	0.083	5.8	LOS A	0.1	0.8	0.37	0.61	0.37	50.7
6	R2	12	0.0	12	0.0	0.083	9.4	LOS A	0.1	0.8	0.37	0.61	0.37	50.3
Appr	oach	83	0.0	83	0.0	0.083	6.4	LOS A	0.1	0.8	0.37	0.61	0.37	48.8
North	n: Smar	t Street (N))											
7	L2	34	0.0	34	0.0	0.324	4.9	LOS A	0.5	3.4	0.22	0.53	0.22	50.1
8	T1	317	0.0	317	0.0	0.324	5.0	LOS A	0.5	3.4	0.22	0.53	0.22	50.1
9	R2	69	0.0	69	0.0	0.324	8.5	LOS A	0.5	3.4	0.22	0.53	0.22	53.9
Appr	oach	420	0.0	420	0.0	0.324	5.6	LOS A	0.5	3.4	0.22	0.53	0.22	51.1
West	: Cunni	nghame St	treet (\	N)										
10	L2	18	0.0	18	0.0	0.119	4.8	LOS A	0.1	1.0	0.18	0.58	0.18	52.7
11	T1	52	0.0	52	0.0	0.119	4.8	LOS A	0.1	1.0	0.18	0.58	0.18	49.3
12	R2	57	0.0	57	0.0	0.119	8.5	LOS A	0.1	1.0	0.18	0.58	0.18	49.3
Appr	oach	126	0.0	126	0.0	0.119	6.5	LOS A	0.1	1.0	0.18	0.58	0.18	50.1
All Ve	ehicles	777	0.0	777	0.0	0.324	5.8	LOS A	0.5	3.4	0.22	0.55	0.22	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: 103 [EX AM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 103 [EX AM Nelson/Smart]

中中 Network: N101 [EX AM]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	ovement Performance - Vehicles ov Turn Demand Flows Arrival Flows Deg. Average Level of Aver. Back of Prop. Effective Aver. Averag													
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. Ba	ck of	Prop.	Effective	Aver.	Averag
		Total	ΗV	Total	ΗV	Jaur	Delay		Vehicles D	istance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			,	ˈkm/h
South	n: Smai	rt Street												
1	L2	71	5.0	71	5.0	0.303	47.3	LOS D	2.0	14.4	0.95	0.75	0.95	19.8
2	T1	57	5.0	57	5.0	0.232	43.2	LOS D	1.6	11.5	0.93	0.71	0.93	20.8
3	R2	43	5.0	43	5.0	0.185	46.4	LOS D	1.2	8.6	0.93	0.73	0.93	20.0
Appro	bach	171	5.0	171	5.0	0.303	45.7	LOS D	2.0	14.4	0.94	0.73	0.94	20.2
East:	Nelsor	n Street												
4	L2	94	5.0	94	5.0	0.291	28.5	LOS C	4.0	29.3	0.76	0.69	0.76	27.3
5	T1	286	5.0	286	5.0	0.291	25.2	LOS C	4.2	30.3	0.76	0.65	0.76	12.6
6	R2	95	5.0	95	5.0	0.272	33.5	LOS C	2.2	16.3	0.81	0.74	0.81	10.4
Appro	bach	475	5.0	475	5.0	0.291	27.5	LOS C	4.2	30.3	0.77	0.68	0.77	17.2
North	: Smar	t Street												
7	L2	140	5.0	140	5.0	0.230	28.8	LOS C	3.0	21.9	0.76	0.73	0.76	6.4
8	T1	140	5.0	140	5.0	0.412	26.9	LOS C	5.3	38.6	0.80	0.71	0.80	25.7
9	R2	94	5.0	94	5.0	0.412	30.2	LOS C	5.3	38.6	0.80	0.71	0.80	6.7
Appro	bach	374	5.0	374	5.0	0.412	28.4	LOS C	5.3	38.6	0.78	0.72	0.78	17.7
West	: Nelso	n Street												
10	L2	38	5.0	38	5.0	0.195	34.1	LOS C	3.3	24.3	0.91	0.75	0.91	11.5
11	T1	221	5.0	221	5.0	0.195	31.3	LOS C	3.4	24.5	0.92	0.75	0.92	11.5
12	R2	127	5.0	127	5.0	0.421	45.5	LOS D	3.8	27.5	1.00	0.83	1.00	22.6
Appro	bach	386	5.0	386	5.0	0.421	36.2	LOS D	3.8	27.5	0.94	0.77	0.94	17.4
All Ve	hicles	1405	5.0	1405	5.0	0.421	32.4	LOS C	5.3	38.6	0.84	0.72	0.84	17.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	k of Queue Distance m	Prop. Queued	Effective Stop Rate						
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
All Pe	destrians	211	44.3	LOS E			0.94	0.94						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 103 [EX AM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	59	0	40
Green Time (sec)	35	34	13
Phase Time (sec)	41	40	19
Phase Split	41%	40%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

SITE LAYOUT

Site: 102 [EX AM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 102 [EX AM Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Movement Performance - Vehicles														
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	lack of	Prop. Queued	Effective Stop	Aver. / No.	Averag e	
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles \$	Speed km/h	
East:	Nelso	n Street													
4	L2	36	5.0	36	5.0	0.130	9.8	LOS A	2.7	19.6	0.54	0.49	0.54	35.8	
5	T1	331	5.0	330	5.0	0.130	6.6	LOS A	2.9	20.9	0.55	0.48	0.55	25.7	
Appro	bach	366	5.0	366	5.0	0.130	6.9	LOS A	2.9	20.9	0.55	0.49	0.55	28.4	
West	: Nelso	n Street													
11	T1	477	5.0	477	5.0	0.168	2.5	LOS A	1.4	10.0	0.18	0.15	0.18	27.5	
12	R2	82	5.0	82	5.0	0.118	6.4	LOS A	0.4	2.8	0.17	0.54	0.17	35.4	
Appro	bach	559	5.0	559	5.0	0.168	3.1	LOS A	1.4	10.0	0.18	0.21	0.18	31.9	
All Ve	ehicles	925	5.0	925	5.0	0.168	4.6	LOS A	2.9	20.9	0.33	0.32	0.33	30.1	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedest	rians						
Mov	Description	Demand	Average	Level of <i>i</i>	Average Back	of Queue	Prop.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	destrians	158	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 102 [EX AM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	82	63
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Site: 101 [EX PM Nelson/Station/Barbara]

♦♦ Network: N101 [EX PM]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delav	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles \$	Speed km/h
South	n: Barb	ara Street												
1	L2	168	5.0	168	5.0	0.745	34.1	LOS C	11.7	85.4	0.91	0.84	0.94	15.9
2	T1	278	5.0	278	5.0	0.745	30.6	LOS C	11.7	85.4	0.91	0.84	0.94	29.7
3	R2	169	5.0	169	5.0	0.245	19.2	LOS B	2.8	20.4	0.72	0.72	0.72	28.3
Appro	bach	616	5.0	616	5.0	0.745	28.4	LOS C	11.7	85.4	0.86	0.80	0.88	25.0
East:	Nelso	n Street												
4	L2	205	5.0	205	5.0	0.244	12.0	LOS B	2.0	14.6	0.50	0.64	0.50	32.6
5	T1	178	5.0	178	5.0	0.725	34.4	LOS C	4.8	35.1	0.91	0.76	0.94	10.1
6	R2	39	5.0	39	5.0	0.310	56.7	LOS E	1.2	8.9	1.00	0.73	1.00	19.1
Appro	bach	422	5.0	422	5.0	0.725	25.6	LOS C	4.8	35.1	0.72	0.70	0.73	23.3
North	: Statio	on Street												
7	L2	24	5.0	24	5.0	0.022	5.0	LOS A	0.1	0.9	0.25	0.49	0.25	36.1
8	T1	128	5.0	128	5.0	0.681	50.2	LOS D	4.0	29.0	1.00	0.86	1.10	25.9
9	R2	39	5.0	39	5.0	0.217	49.8	LOS D	1.1	8.2	0.96	0.73	0.96	20.1
Appro	bach	192	5.0	192	5.0	0.681	44.4	LOS D	4.0	29.0	0.90	0.78	0.96	25.4
West	: Nelso	on Street												
10	L2	48	5.0	48	5.0	0.305	36.6	LOS D	3.0	22.1	0.85	0.80	1.20	24.3
11	T1	235	5.0	235	5.0	0.305	33.9	LOS C	3.3	24.3	0.85	0.75	1.00	6.4
12	R2	159	5.0	159	5.0	0.682	33.5	LOS C	3.6	26.2	1.00	0.83	1.08	24.6
Appro	bach	442	5.0	442	5.0	0.682	34.0	LOS C	3.6	26.2	0.90	0.79	1.05	18.2
All Ve	ehicles	1672	5.0	1672	5.0	0.745	31.0	LOS C	11.7	85.4	0.84	0.77	0.90	23.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	158	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101 [EX PM Nelson/Station/Barbara]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, C*, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E	F1
Phase Change Time (sec)	100	19	31	71	87
Green Time (sec)	13	6	34	10	7
Phase Time (sec)	19	12	40	16	13
Phase Split	19%	12%	40%	16%	13%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 104 [EX PM Nelson/Horsely/Court]

中 Network: N101 [EX PM]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov	Turn	Demand F	lows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver. /	Averag
		Total	ΗV	Total	ΗV	Jain	Delay		Vehicles I	Distance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Cour	t Road												
21	L2	131	5.0	131	5.0	0.855	61.3	LOS E	12.6	91.8	1.00	1.00	1.20	10.6
22	T1	232	5.0	232	5.0	0.855	56.7	LOS E	12.6	91.8	1.00	0.98	1.18	10.8
23b	R3	206	5.0	206	5.0	0.737	54.9	LOS D	8.6	62.9	0.99	0.88	1.06	24.8
Appro	bach	568	5.0	568	5.0	0.855	57.1	LOS E	12.6	91.8	1.00	0.95	1.14	16.8
South	nEast:	The Horsle	y Drive	е										
4b	L3	8	5.0	8	5.0	0.473	27.4	LOS C	9.9	72.6	0.70	0.77	0.70	35.3
4a	L1	420	5.0	420	5.0	0.473	25.4	LOS C	9.9	72.6	0.70	0.77	0.70	32.9
6a	R1	1118	5.0	1118	5.0	0.878	53.9	LOS D	21.5	157.2	1.00	0.97	1.16	21.9
Appro	bach	1546	5.0	1546	5.0	0.878	46.0	LOS D	21.5	157.2	0.92	0.92	1.03	24.2
North	: The I	Horsely Driv	ve											
27a	L1	1111	5.0	1111	5.0	0.610	23.9	LOS C	14.6	106.3	0.71	0.80	0.71	40.0
28	T1	145	5.0	145	5.0	0.552	55.4	LOS E	5.0	36.4	0.98	0.80	0.98	21.8
29	R2	87	5.0	87	5.0	0.349	56.9	LOS E	2.9	21.2	0.95	0.77	0.95	16.9
Appro	bach	1343	5.0	1343	5.0	0.610	29.5	LOS C	14.6	106.3	0.76	0.79	0.76	36.1
West	Nelso	on Street												
30	L2	115	5.0	115	5.0	0.773	43.1	LOS D	5.0	36.2	1.00	0.92	1.21	8.8
32a	R1	207	5.0	207	5.0	0.773	56.6	LOS E	5.3	38.9	1.00	0.93	1.19	23.0
Appro	bach	322	5.0	322	5.0	0.773	51.8	LOS D	5.3	38.9	1.00	0.92	1.20	19.7
All Ve	hicles	3780	5.0	3780	5.0	0.878	42.3	LOS D	21.5	157.2	0.88	0.88	0.97	26.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95				
All Pe	destrians	211	54.3	LOS E			0.95	0.95				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 104 [EX PM Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase C Input Phase Sequence: A, B*, C, D, E Output Phase Sequence: A, C, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E
Phase Change Time (sec)	72	0	18	49
Green Time (sec)	42	12	25	17
Phase Time (sec)	48	18	31	23
Phase Split	40%	15%	26%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [EX PM Smart Lane]

中 Network: N101 [EX PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	HV	Total	ΗV				Vehicles [Distance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Sma	rt Street												
1	L2	36	5.0	36	5.0	0.191	3.7	LOS A	0.0	0.0	0.00	0.06	0.00	56.0
2	T1	323	5.0	323	5.0	0.191	0.0	LOS A	0.0	0.0	0.00	0.06	0.00	54.0
Appr	oach	359	5.0	359	5.0	0.191	0.4	NA	0.0	0.0	0.00	0.06	0.00	55.0
North	n: Smai	rt Street												
8	T1	285	5.0	285	5.0	0.217	0.3	LOS A	0.1	1.0	0.12	0.06	0.12	56.3
9	R2	29	5.0	29	5.0	0.217	7.2	LOS A	0.1	1.0	0.12	0.06	0.12	55.5
Appr	oach	315	5.0	315	5.0	0.217	0.9	NA	0.1	1.0	0.12	0.06	0.12	56.1
West	: Smar	t Lane												
10	L2	39	5.0	39	5.0	0.066	6.8	LOS A	0.1	0.7	0.40	0.63	0.40	48.5
12	R2	20	5.0	20	5.0	0.066	8.6	LOS A	0.1	0.7	0.40	0.63	0.40	48.5
Appr	oach	59	5.0	59	5.0	0.066	7.4	LOS A	0.1	0.7	0.40	0.63	0.40	48.5
All Ve	ehicles	733	5.0	733	5.0	0.217	1.2	NA	0.1	1.0	0.08	0.10	0.08	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: 101 [EX PM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bac Queue	k of	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Dis veh	stance m		Rate	Cycles S	Speed km/h
South	n: The	Horsley Dri	ve (S))										
1	L2	49	0.0	49	0.0	0.626	5.7	LOS A	0.0	0.0	0.00	0.04	0.00	58.7
2	T1	1572	5.0	1572	5.0	0.626	0.1	LOS A	0.0	0.0	0.00	0.02	0.00	59.1
Appro	bach	1621	4.8	1621	4.8	0.626	0.3	NA	0.0	0.0	0.00	0.02	0.00	59.1
North: The Horsley Drive (N)														
8	T1	1528	5.0	1528	5.0	0.405	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1528	5.0	1528	5.0	0.405	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame Si	treet											
10	L2	93	0.0	93	0.0	0.241	11.2	LOS B	0.3	1.8	0.62	0.85	0.65	25.9
12	R2	7	0.0	7	0.0	0.947	898.6	LOS F	1.1	7.8	1.00	1.07	1.33	0.6
Appro	bach	100	0.0	100	0.0	0.947	76.5	LOS F	1.1	7.8	0.65	0.87	0.70	6.0
All Ve	hicles	3249	4.8	3249	4.8	0.947	2.5	NA	1.1	7.8	0.02	0.04	0.02	51.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [EX PM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand F	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles [veh	Distance m		Rate	Cycles S	Speed km/h
South	n: The	Horsley Dri	ve (S)		,,,				1011					
1	L2	442	0.0	442	0.0	0.322	13.0	LOS B	6.7	47.2	0.43	0.68	0.43	44.1
2	T1	805	5.0	805	5.0	0.594	38.5	LOS D	13.6	99.0	0.87	0.76	0.87	29.9
3	R2	293	0.0	293	0.0	0.896	79.9	LOS E	13.8	96.6	1.00	0.97	1.27	19.2
Appro	bach	1540	2.6	1540	2.6	0.896	39.1	LOS D	13.8	99.0	0.77	0.78	0.82	29.5
East:	Poldin	g Street (E)											
4	L2	206	0.0	206	0.0	0.231	20.6	LOS C	4.1	28.9	0.58	0.72	0.58	36.3
5	T1	543	0.0	543	0.0	0.868	67.4	LOS E	15.0	104.9	0.98	0.98	1.21	28.6
Appro	bach	749	0.0	749	0.0	0.868	54.5	LOS D	15.0	104.9	0.87	0.90	1.04	29.6
North	: The ł	Horsley Driv	ve (N)											
7	L2	21	0.0	21	0.0	0.883	67.6	LOS E	21.1	153.8	1.00	1.01	1.17	29.3
8	T1	858	5.0	858	5.0	0.883	61.8	LOS E	21.1	153.8	0.99	1.01	1.17	20.1
9	R2	106	0.0	106	0.0	0.582	72.5	LOS E	4.4	30.8	1.00	0.79	1.00	27.0
Appro	bach	985	4.4	985	4.4	0.883	63.1	LOS E	21.1	153.8	0.99	0.98	1.15	21.4
West	: Poldir	ng Street (V	N)											
10	L2	18	0.0	18	0.0	0.411	36.2	LOS D	9.4	65.5	0.75	0.66	0.75	39.1
11	T1	303	0.0	303	0.0	0.411	30.7	LOS C	9.4	65.5	0.75	0.66	0.75	39.9
12	R2	320	0.0	320	0.0	0.876	57.3	LOS E	12.0	83.7	1.00	0.95	1.25	21.2
Appro	bach	641	0.0	641	0.0	0.876	44.1	LOS D	12.0	83.7	0.88	0.81	1.00	30.7
All Ve	hicles	3916	2.1	3916	2.1	0.896	48.9	LOS D	21.1	153.8	0.86	0.86	0.97	27.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
All Pe	destrians	158	64.3	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

PHASING SUMMARY

Site: 101 [EX PM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	46	75	109	129
Green Time (sec)	40	23	28	14	5
Phase Time (sec)	46	29	34	20	11
Phase Split	33%	21%	24%	14%	8%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 103 [EX PM Nelson/Smart]

中中 Network: N101 [EX PM]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	/ Turn Demand Flows		Flows	Arrival	Flows	Deg.	Average	Level of	Aver. Back of		Prop.	Effective	Aver.	Averag
שו		Total	ΗV	Total	НV	Sauri	Delay	Service	Queue Vehicles Distance		Queueu	Rate	Cvcles S	e Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		, tato	0,000	km/h
South	n: Sma	rt Street												
1	L2	123	5.0	123	5.0	0.429	45.4	LOS D	3.4	25.0	0.95	0.78	0.95	20.2
2	T1	119	5.0	119	5.0	0.394	41.6	LOS D	3.3	23.9	0.94	0.75	0.94	21.2
3	R2	93	5.0	93	5.0	0.323	44.5	LOS D	2.5	18.4	0.93	0.76	0.93	20.4
Approach		335	5.0	335	5.0	0.429	43.8	LOS D	3.4	25.0	0.94	0.76	0.94	20.6
East: Nelson Street														
4	L2	74	5.0	74	5.0	0.299	21.9	LOS C	4.7	34.1	0.67	0.62	0.67	29.9
5	T1	431	5.0	431	5.0	0.299	18.6	LOS B	4.8	34.9	0.67	0.59	0.67	15.4
6	R2	196	5.0	196	5.0	0.438	28.0	LOS C	4.4	32.0	0.78	0.76	0.78	11.9
Appro	bach	700	5.0	700	5.0	0.438	21.6	LOS C	4.8	34.9	0.70	0.64	0.70	17.4
North	: Smar	t Street												
7	L2	76	5.0	76	5.0	0.201	38.9	LOS D	1.9	13.8	0.86	0.74	0.86	4.9
8	T1	101	5.0	101	5.0	0.440	37.7	LOS D	4.5	33.0	0.92	0.77	0.92	22.6
9	R2	69	5.0	69	5.0	0.440	41.0	LOS D	4.5	33.0	0.92	0.77	0.92	5.1
Approach		246	5.0	246	5.0	0.440	39.0	LOS D	4.5	33.0	0.90	0.76	0.90	15.3
West: Nelson Street														
10	L2	46	5.0	46	5.0	0.158	28.2	LOS C	3.3	24.4	0.89	0.74	0.89	13.2
11	T1	223	5.0	223	5.0	0.158	20.9	LOS C	3.3	24.4	0.78	0.64	0.78	15.0
12	R2	89	5.0	89	5.0	0.259	35.9	LOS D	2.4	17.6	0.93	0.79	0.93	24.9
Approach		359	5.0	359	5.0	0.259	25.6	LOS C	3.3	24.4	0.83	0.69	0.83	19.5
All Ve	hicles	1640	5.0	1640	5.0	0.440	29.6	LOS C	4.8	34.9	0.81	0.70	0.81	18.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	211	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Site: 103 [EX PM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	49	0	27
Green Time (sec)	45	21	16
Phase Time (sec)	51	27	22
Phase Split	51%	27%	22%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

Site: 102 [EX PM Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	lovement Performance - Vehicles													
Mov ID	Turn	Demand F	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. E Que	Back of eue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles	Speed km/h
East:	Nelso	n Street												
4	L2	34	5.0	34	5.0	0.238	9.2	LOS A	4.5	32.5	0.49	0.45	0.49	36.3
5	T1	586	5.0	586	5.0	0.238	6.6	LOS A	4.7	34.6	0.54	0.49	0.54	25.8
Appro	bach	620	5.0	620	5.0	0.238	6.7	LOS A	4.7	34.6	0.54	0.49	0.54	27.4
West	: Nelso	n Street												
11	T1	340	5.0	340	5.0	0.120	2.3	LOS A	0.8	5.8	0.17	0.14	0.17	28.1
12	R2	75	5.0	75	5.0	0.150	6.9	LOS A	0.4	2.6	0.17	0.54	0.17	35.1
Appro	bach	415	5.0	415	5.0	0.150	3.2	LOS A	0.8	5.8	0.17	0.21	0.17	32.4
All Ve	ehicles	1035	5.0	1035	5.0	0.238	5.3	LOS A	4.7	34.6	0.39	0.38	0.39	29.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
All Pe	destrians	158	44.3	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [EX PM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	89	70
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Site: 101 [EX SAT Nelson/Station/Barbara]

♦ Network: N101 [EX SAT]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	Turn	Demand F	=lows	Arriva	Flows	Deg.	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver.	Averag
שו		Total	нv	Total	HV	Saur	Delay	Service	Vehicles [ue Distance	Queueu	Si0p Rate	Cvcles	e Sneed
		veh/h	%	veh/h	%	v/c	sec		veh	m		, tato	e yelee	km/h
South	n: Barb	ara Street												
1	L2	179	5.0	179	5.0	0.779	41.1	LOS D	11.2	81.8	0.96	0.90	1.05	15.0
2	T1	211	5.0	211	5.0	0.779	37.7	LOS D	11.2	81.8	0.96	0.90	1.05	28.0
3	R2	181	5.0	181	5.0	0.298	21.6	LOS C	3.2	23.5	0.78	0.74	0.78	27.3
Appro	bach	571	5.0	571	5.0	0.779	33.7	LOS C	11.2	81.8	0.90	0.85	0.96	22.9
East:	Nelso	n Street												
4	L2	285	5.0	285	5.0	0.306	18.7	LOS B	5.3	38.8	0.67	0.73	0.67	29.4
5	T1	232	5.0	232	5.0	0.753	32.2	LOS C	6.1	44.5	0.89	0.76	0.92	10.7
6	R2	59	5.0	59	5.0	0.183	48.8	LOS D	1.8	12.9	1.00	0.77	1.00	20.6
Appro	bach	576	5.0	576	5.0	0.753	27.2	LOS C	6.1	44.5	0.79	0.75	0.81	22.9
North	: Statio	on Street												
7	L2	28	5.0	28	5.0	0.025	5.2	LOS A	0.2	1.1	0.27	0.50	0.27	36.0
8	T1	160	5.0	160	5.0	0.737	49.5	LOS D	5.0	36.2	1.00	0.91	1.15	26.0
9	R2	33	5.0	33	5.0	0.152	47.1	LOS D	0.9	6.6	0.93	0.71	0.93	20.7
Appro	bach	221	5.0	221	5.0	0.737	43.4	LOS D	5.0	36.2	0.90	0.82	1.00	25.9
West	: Nelso	n Street												
10	L2	40	5.0	40	5.0	0.503	46.1	LOS D	4.2	30.9	0.95	0.84	1.30	21.9
11	T1	261	5.0	261	5.0	0.503	42.6	LOS D	4.2	30.9	0.95	0.80	1.11	5.3
12	R2	198	5.0	198	5.0	0.784	49.9	LOS D	6.0	43.8	0.97	0.90	1.17	20.5
Appro	bach	499	5.0	499	5.0	0.784	45.8	LOS D	6.0	43.8	0.96	0.85	1.15	15.3
All Ve	hicles	1866	5.0	1866	5.0	0.784	36.1	LOS D	11.2	81.8	0.88	0.81	0.97	21.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate						
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
All Pe	destrians	158	44.3	LOS E			0.94	0.94						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [EX SAT Nelson/Station/Barbara]

♦ Network: N101 [EX SAT]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	90	13	48	66
Green Time (sec)	17	29	12	18
Phase Time (sec)	23	35	18	24
Phase Split	23%	35%	18%	24%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 104 [EX SAT Nelson/Horsely/Court]

中 Network: N101 [EX SAT]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehio	cles									
Mov	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B	ack of	Prop.	Effective	Aver. /	Averag
		Total	ΗV	Total	ΗV	Caur	Delay		Vehicles	Distance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Cour	t Road												
21	L2	136	5.0	136	5.0	0.834	55.6	LOS E	14.1	103.3	1.00	0.96	1.14	11.5
22	T1	274	5.0	274	5.0	0.834	51.5	LOS D	14.1	103.3	1.00	0.95	1.13	11.5
23b	R3	254	5.0	254	5.0	0.718	50.2	LOS D	9.6	70.0	0.97	0.86	1.01	25.9
Appro	bach	663	5.0	663	5.0	0.834	51.8	LOS D	14.1	103.3	0.99	0.92	1.08	18.1
South	nEast: ˈ	The Horsle	y Drive	e										
4b	L3	8	5.0	8	5.0	0.321	35.7	LOS D	5.4	39.7	0.76	0.76	0.76	31.7
4a	L1	204	5.0	204	5.0	0.321	33.6	LOS C	5.4	39.7	0.76	0.76	0.76	28.7
6a	R1	632	5.0	632	5.0	0.802	57.0	LOS E	11.5	84.2	1.00	0.91	1.12	21.2
Appro	bach	844	5.0	844	5.0	0.802	51.1	LOS D	11.5	84.2	0.94	0.88	1.03	22.7
North	: The ł	Horsely Driv	ve											
27a	L1	843	5.0	843	5.0	0.464	25.3	LOS C	9.7	71.0	0.70	0.78	0.70	39.3
28	T1	155	5.0	155	5.0	0.384	44.4	LOS D	5.0	36.8	0.89	0.77	0.89	24.5
29	R2	169	5.0	169	5.0	0.384	47.7	LOS D	5.0	36.8	0.89	0.79	0.89	19.2
Appro	bach	1167	5.0	1167	5.0	0.464	31.1	LOS C	9.7	71.0	0.75	0.78	0.75	34.5
West	: Nelso	n Street												
30	L2	162	5.0	162	5.0	0.709	32.3	LOS C	4.4	31.8	1.00	0.85	1.06	10.9
32a	R1	173	5.0	173	5.0	0.709	54.0	LOS D	4.8	34.8	1.00	0.87	1.10	23.6
Appro	bach	335	5.0	335	5.0	0.709	43.5	LOS D	4.8	34.8	1.00	0.86	1.08	19.8
All Ve	ehicles	3009	5.0	3009	5.0	0.834	42.7	LOS D	14.1	103.3	0.88	0.85	0.94	25.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov	Description	Demand	Average	Level of A	Average Back	of Queue	Prop.	Effective Stop Bate					
שו	Decemption	ped/h	sec	Service	ped	m	Queueu						
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95					
All Pe	destrians	211	54.3	LOS E			0.95	0.95					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 104 [EX SAT Nelson/Horsely/Court]

中 Network: N101 [EX SAT]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase C Input Phase Sequence: A, B*, C, D, E Output Phase Sequence: A, C, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E
Phase Change Time (sec)	88	0	18	54
Green Time (sec)	26	12	30	28
Phase Time (sec)	32	18	36	34
Phase Split	27%	15%	30%	28%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [EX SAT Smart Lane]

中 Network: N101 [EX SAT]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	ovement Performance - Vehicles													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	HV	Total	HV				Vehicles [Distance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sma	rt Street												
1	L2	36	5.0	36	5.0	0.191	3.7	LOS A	0.0	0.0	0.00	0.06	0.00	56.0
2	T1	323	5.0	323	5.0	0.191	0.0	LOS A	0.0	0.0	0.00	0.06	0.00	54.0
Appro	oach	359	5.0	359	5.0	0.191	0.4	NA	0.0	0.0	0.00	0.06	0.00	55.0
North	n: Smai	rt Street												
8	T1	285	5.0	285	5.0	0.203	0.3	LOS A	0.1	0.9	0.11	0.06	0.11	56.3
9	R2	29	5.0	29	5.0	0.203	7.1	LOS A	0.1	0.9	0.11	0.06	0.11	55.5
Appro	oach	315	5.0	315	5.0	0.203	0.9	NA	0.1	0.9	0.11	0.06	0.11	56.1
West	: Smar	t Lane												
10	L2	39	5.0	39	5.0	0.067	6.8	LOS A	0.1	0.7	0.41	0.65	0.41	48.4
12	R2	20	5.0	20	5.0	0.067	8.8	LOS A	0.1	0.7	0.41	0.65	0.41	48.4
Appro	oach	59	5.0	59	5.0	0.067	7.5	LOS A	0.1	0.7	0.41	0.65	0.41	48.4
All Ve	ehicles	733	5.0	733	5.0	0.203	1.2	NA	0.1	0.9	0.08	0.11	0.08	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: 101 [EX SAT Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	ovement Performance - Vehicles													
Mov ID	Turn	Demand I	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bac Queue	k of e	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Dis veh	stance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	62	0.0	62	0.0	0.416	5.6	LOS A	0.0	0.0	0.00	0.06	0.00	58.4
2	T1	1255	5.0	1255	5.0	0.416	0.1	LOS A	0.0	0.0	0.00	0.03	0.00	59.2
Appro	bach	1317	4.8	1317	4.8	0.416	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.1
North	: The I	lorsley Driv	ve (N)											
8	T1	1383	5.0	1383	5.0	0.366	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1383	5.0	1383	5.0	0.366	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame S	treet											
10	L2	117	0.0	117	0.0	0.192	9.1	LOS A	0.3	1.9	0.56	0.77	0.56	28.8
12	R2	18	0.0	18	0.0	0.719	274.1	LOS F	0.9	6.2	0.99	1.06	1.30	1.8
Appro	bach	135	0.0	135	0.0	0.719	44.3	LOS E	0.9	6.2	0.62	0.81	0.66	9.6
All Ve	hicles	2835	4.7	2835	4.7	0.719	2.3	NA	0.9	6.2	0.03	0.05	0.03	51.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [EX SAT Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Move	Novement Performance - Vehicles													
Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	Aver. Ba	ack of	Prop.	Effective	Aver.	Averag
U		Total	нν	Total	нν	Sath	Delay	Service	Que Vehicles [ue Distance	Queued	Stop Rate	NO. Cycles S	e Sneed
		veh/h	%	veh/h	%	v/c	sec		venielee i	m		i tato	Cycles (km/h
South	n: The I	Horsley Dr	ive (S)											
1	L2	389	0.0	389	0.0	0.267	9.0	LOS A	3.9	27.3	0.31	0.65	0.31	47.7
2	T1	626	5.0	626	5.0	0.621	48.1	LOS D	11.5	83.8	0.93	0.80	0.93	26.6
3	R2	283	0.0	283	0.0	0.748	63.6	LOS E	11.5	80.2	1.00	0.87	1.04	22.2
Appro	bach	1299	2.4	1299	2.4	0.748	39.7	LOS D	11.5	83.8	0.76	0.77	0.77	29.3
East:	Poldin	g Street (E	E)											
4	L2	312	0.0	312	0.0	0.342	16.7	LOS B	5.6	39.3	0.54	0.72	0.54	39.1
5	T1	327	0.0	327	0.0	0.747	63.7	LOS E	8.7	61.0	0.98	0.86	1.09	29.4
6	R2	17	0.0	17	0.0	0.747	70.0	LOS E	8.7	61.0	1.00	0.88	1.08	28.8
Appro	bach	656	0.0	656	0.0	0.747	41.5	LOS D	8.7	61.0	0.78	0.80	0.83	31.9
North	: The H	lorsley Dri	ve (N)											
7	L2	38	0.0	38	0.0	0.742	56.1	LOS E	14.4	104.6	0.97	0.86	0.99	32.2
8	T1	676	5.0	676	5.0	0.742	50.2	LOS D	14.4	104.6	0.96	0.85	0.98	22.9
9	R2	96	0.0	96	0.0	0.253	55.6	LOS E	3.4	23.5	0.88	0.77	0.88	30.9
Appro	bach	809	4.2	809	4.2	0.742	51.1	LOS D	14.4	104.6	0.95	0.84	0.97	24.7
West	: Poldir	ng Street (V	W)											
10	L2	31	0.0	31	0.0	0.419	37.7	LOS D	9.4	65.8	0.77	0.68	0.77	38.5
11	T1	285	0.0	285	0.0	0.419	32.1	LOS C	9.4	65.8	0.77	0.68	0.77	39.1
12	R2	317	0.0	317	0.0	0.696	41.5	LOS D	9.9	69.0	0.96	0.84	0.96	25.8
Appro	bach	633	0.0	633	0.0	0.696	37.1	LOS D	9.9	69.0	0.87	0.76	0.87	33.3
All Ve	hicles	3397	1.9	3397	1.9	0.748	42.3	LOS D	14.4	104.6	0.83	0.79	0.85	29.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
All Pe	destrians	158	64.3	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [EX SAT Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	0	44	78	105
Green Time (sec)	38	28	21	29
Phase Time (sec)	44	34	27	35
Phase Split	31%	24%	19%	25%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 103 [EX SAT Nelson/Smart]

中中 Network: N101 [EX SAT]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	Turn	Demand	Flows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. Ba	ack of	Prop.	Effective	Aver. A	Averag
		Total	ΗV	Total	ΗV	Jan	Delay	OEIVICE	Vehicles [Distance	Queueu	Rate	Cycles S	Speed
0 11	_	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sma	rt Street												
1	L2	144	5.0	144	5.0	0.423	42.7	LOS D	3.9	28.4	0.93	0.78	0.93	20.8
2	T1	55	5.0	55	5.0	0.187	37.1	LOS D	1.7	12.4	0.88	0.69	0.88	22.1
3	R2	76	5.0	76	5.0	0.187	40.6	LOS D	1.7	12.4	0.88	0.72	0.88	21.5
Appro	bach	275	5.0	275	5.0	0.423	41.0	LOS D	3.9	28.4	0.90	0.75	0.90	21.3
East:	Nelso	n Street												
4	L2	113	5.0	113	5.0	0.273	23.6	LOS C	4.1	29.6	0.69	0.66	0.69	29.0
5	T1	315	5.0	315	5.0	0.273	20.2	LOS C	4.2	30.8	0.69	0.61	0.69	14.6
6	R2	77	5.0	77	5.0	0.179	26.6	LOS C	1.6	11.4	0.71	0.70	0.71	12.3
Appro	bach	504	5.0	504	5.0	0.273	22.0	LOS C	4.2	30.8	0.70	0.63	0.70	20.0
North	: Smai	t Street												
7	L2	86	5.0	86	5.0	0.229	39.2	LOS D	2.2	15.9	0.87	0.74	0.87	4.9
8	T1	83	5.0	83	5.0	0.414	37.4	LOS D	4.2	30.8	0.91	0.76	0.91	22.6
9	R2	77	5.0	77	5.0	0.414	40.8	LOS D	4.2	30.8	0.91	0.76	0.91	5.1
Appro	bach	246	5.0	246	5.0	0.414	39.1	LOS D	4.2	30.8	0.90	0.76	0.90	13.9
West	: Nelso	n Street												
10	L2	44	5.0	44	5.0	0.161	25.5	LOS C	2.9	21.4	0.81	0.69	0.81	14.2
11	T1	213	5.0	213	5.0	0.161	22.9	LOS C	3.0	21.9	0.83	0.69	0.83	14.2
12	R2	145	5.0	145	5.0	0.411	34.8	LOS C	3.9	28.5	0.93	0.81	0.93	25.2
Appro	bach	402	5.0	402	5.0	0.411	27.5	LOS C	3.9	28.5	0.86	0.73	0.86	20.7
All Ve	hicles	1427	5.0	1427	5.0	0.423	30.1	LOS C	4.2	30.8	0.82	0.70	0.82	19.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	211	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 103 [EX SAT Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	52	0	27
Green Time (sec)	42	21	19
Phase Time (sec)	48	27	25
Phase Split	48%	27%	25%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

Site: 102 [EX SAT Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	/ Turn Demand Flows Arriva		Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e	
		Total veh/h	HV %	Total veh/h	HV %	v/c	Sec		Vehicles I	Distance m		Rate	Cycles S	Speed km/h
East:	Nelso	n Street	/0	VOII/II	/0	10	000		VOI1					N11//11
4	L2	167	5.0	167	5.0	0.325	9.0	LOS A	4.8	35.3	0.46	0.52	0.46	35.8
5	T1	501	5.0	501	5.0	0.325	6.8	LOS A	4.9	35.8	0.55	0.53	0.55	24.9
Appro	bach	668	5.0	668	5.0	0.325	7.4	LOS A	4.9	35.8	0.53	0.53	0.53	30.6
West	: Nelso	n Street												
11	T1	568	5.0	568	5.0	0.201	2.7	LOS A	1.7	12.1	0.20	0.17	0.20	26.7
12	R2	121	5.0	121	5.0	0.272	8.5	LOS A	0.8	6.0	0.24	0.57	0.24	34.1
Appro	bach	689	5.0	689	5.0	0.272	3.8	LOS A	1.7	12.1	0.20	0.24	0.20	31.2
All Ve	ehicles	1358	5.0	1358	5.0	0.325	5.5	LOS A	4.9	35.8	0.36	0.38	0.36	30.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov	Description	Demand	Average	of Queue	Prop.	Effective						
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	158	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [EX SAT Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	79	60
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

. . **Base Case SIDRA Assessment** Appendix C

SITE LAYOUT

Site: 101 [Base AM Nelson/Station/Barbara]

New Site Site Category: (None) Signals - Fixed Time Isolated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Created: Friday, 16 April 2021 2:39:19 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

Site: 101 [Base AM Nelson/Station/Barbara]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	HV	Total	ΗV				Vehicles I	Distance		Rate	Cycles	Speed
South	y Dorb	veh/h	%	veh/h	%	V/C	sec		veh	m				km/h
Jour			5.0	00	5.0	0 557	40.7		C 4	46.4	0.04	0.70	0.04	45 4
		98	5.0	98	5.0	0.557	40.7		0.4	40.4	0.94	0.79	0.94	15.1
2	11	139	5.0	139	5.0	0.557	37.2	LOSD	6.4	46.4	0.94	0.79	0.94	28.1
3	R2	91	5.0	91	5.0	0.146	16.3	LOS B	1.3	9.3	0.68	0.68	0.68	29.6
Appro	bach	327	5.0	327	5.0	0.557	32.5	LOS C	6.4	46.4	0.86	0.76	0.86	23.7
East:	Nelso	n Street												
4	L2	192	5.0	191	5.0	0.243	13.9	LOS B	2.1	15.5	0.40	0.61	0.40	31.6
5	T1	163	5.0	163	5.0	0.575	23.3	LOS C	3.3	24.2	0.69	0.56	0.69	13.6
6	R2	9	5.0	9	5.0	0.048	51.6	LOS D	0.3	2.1	1.00	0.68	1.00	20.1
Appro	bach	364	5.0	364	5.0	0.575	19.1	LOS B	3.3	24.2	0.55	0.59	0.55	25.9
North	: Statio	on Street												
7	L2	33	5.0	33	5.0	0.026	4.4	LOS A	0.1	0.9	0.21	0.48	0.21	36.6
8	T1	257	5.0	257	5.0	0.556	33.5	LOS C	6.6	47.8	0.90	0.75	0.90	29.3
9	R2	58	5.0	58	5.0	0.120	33.0	LOS C	1.3	9.5	0.79	0.70	0.79	24.1
Appro	bach	347	5.0	347	5.0	0.556	30.7	LOS C	6.6	47.8	0.81	0.72	0.81	29.0
West	: Nelso	on Street												
10	L2	26	5.0	26	5.0	0.379	43.2	LOS D	2.7	19.7	0.94	0.80	1.20	22.6
11	T1	192	5.0	192	5.0	0.379	42.1	LOS D	3.0	21.7	0.94	0.78	1.06	5.3
12	R2	105	5.0	105	5.0	0.534	51.4	LOS D	3.1	22.8	0.99	0.78	0.99	20.2
Appro	bach	323	5.0	323	5.0	0.534	45.2	LOS D	3.1	22.8	0.96	0.78	1.05	14.3
All Ve	ehicles	1362	5.0	1362	5.0	0.575	31.5	LOS C	6.6	47.8	0.79	0.71	0.81	24.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	158	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Base AM Nelson/Station/Barbara]

♦ Network: N101 [Base AM]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	79	0	29	62
Green Time (sec)	15	23	27	11
Phase Time (sec)	21	29	33	17
Phase Split	21%	29%	33%	17%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

V Site: 101 [Base AM Smart Lane]

New Site Site Category: (None) Giveway / Yield (Two-Way)

V Site: 101 [Base AM Smart Lane]

中 Network: N101 [Base AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Movement Performance - Vehicles														
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	HV	Total	HV				Vehicles [Distance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Smart Street														
1	L2	28	5.0	28	5.0	0.100	3.7	LOS A	0.0	0.0	0.00	0.09	0.00	55.7
2	T1	159	5.0	159	5.0	0.100	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	51.4
Appr	oach	187	5.0	187	5.0	0.100	0.6	NA	0.0	0.0	0.00	0.09	0.00	54.1
North: Smart Street														
8	T1	414	5.0	414	5.0	0.391	0.2	LOS A	0.2	1.8	0.11	0.07	0.11	56.0
9	R2	55	5.0	55	5.0	0.391	6.4	LOS A	0.2	1.8	0.11	0.07	0.11	55.4
Appr	oach	468	5.0	468	5.0	0.391	0.9	NA	0.2	1.8	0.11	0.07	0.11	55.9
West: Smart Lane														
10	L2	20	5.0	20	5.0	0.036	6.1	LOS A	0.0	0.4	0.25	0.58	0.25	49.0
12	R2	11	5.0	11	5.0	0.036	8.7	LOS A	0.0	0.4	0.25	0.58	0.25	49.0
Appr	oach	31	5.0	31	5.0	0.036	7.0	LOS A	0.0	0.4	0.25	0.58	0.25	49.0
All Ve	ehicles	686	5.0	686	5.0	0.391	1.1	NA	0.2	1.8	0.08	0.10	0.08	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: 104 [Base AM Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 104 [Base AM Nelson/Horsely/Court]

中 Network: N101 [Base AM]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Movement Performance - Vehicles														
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles	Distance		Rate	Cycles S	Speed
South		veh/h	%	veh/h	%	V/C	sec		veh	m				km/h
Sout			- ^	40	F 0	0.004	70.4		0.4	04.0	4.00	4.40	4.07	0.4
21	LZ	46	5.0	46	5.0	0.894	72.1	LUSE	8.4	61.6	1.00	1.10	1.37	9.4
22	11	159	5.0	159	5.0	0.894	68.7	LOSE	8.4	61.6	1.00	1.10	1.37	9.4
23b	R3	149	5.0	149	5.0	0.772	64.6	LOS E	5.7	41.3	1.00	0.91	1.18	22.6
Appro	oach	355	5.0	355	5.0	0.894	67.4	LOS E	8.4	61.6	1.00	1.02	1.29	15.8
SouthEast: The Horsley Drive														
4b	L3	11	5.0	11	5.0	0.312	22.1	LOS C	6.0	43.4	0.58	0.72	0.58	37.9
4a	L1	300	5.0	300	5.0	0.312	20.0	LOS C	6.0	43.4	0.58	0.72	0.58	36.4
6a	R1	1116	5.0	1116	5.0	0.877	53.6	LOS D	21.4	156.3	1.00	0.97	1.16	22.0
Approach		1426	5.0	1426	5.0	0.877	46.3	LOS D	21.4	156.3	0.91	0.92	1.03	24.1
North	n: The H	Horsely Driv	ve											
27a	L1	1272	5.0	1267	5.0	0.664	22.4	LOS C	16.9	123.2	0.71	0.80	0.71	40.8
28	T1	162	5.0	161	5.0	0.584	52.4	LOS D	6.3	46.3	0.97	0.81	0.97	22.4
29	R2	208	5.0	208	5.0	0.584	55.6	LOS E	6.3	46.3	0.97	0.81	0.97	17.2
Appro	oach	1642	5.0	<mark>1636</mark> ^{N1}	5.0	0.664	29.5	LOS C	16.9	123.2	0.77	0.80	0.77	35.6
West: Nelson Street														
30	L2	104	5.0	104	5.0	0.829	57.0	LOS E	8.7	63.8	1.00	1.00	1.35	7.1
32a	R1	371	5.0	371	5.0	0.829	59.5	LOS E	8.7	63.8	1.00	1.00	1.27	22.4
Approach		475	5.0	475	5.0	0.829	58.9	LOS E	8.7	63.8	1.00	1.00	1.28	20.0
All Ve	ehicles	3898	5.0	<mark>3892</mark> N1	5.0	0.894	42.7	LOS D	21.4	156.3	0.87	0.89	0.98	27.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	c of Queue Distance m	Prop. Queued	Effective Stop Rate			
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95			
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95			
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95			
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95			
All Pe	destrians	211	54.3	LOS E			0.95	0.95			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Site: 104 [Base AM Nelson/Horsely/Court]

中 Network: N101 [Base AM]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Split Phasing Reference Phase: Phase C Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary											
Phase	Α	В	С	D	1						
Phase Change Time (sec)	48	96	0	21							
Green Time (sec)	42	18	15	21							
Phase Time (sec)	48	24	21	27							
Phase Split	40%	20%	18%	23%							

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

 ∇ Site: 101 [Base AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

SITE LAYOUT

Site: 101 [Base AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 101 [Base AM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehi	cles									
Mov	Turn	Demand F	lows	Arrival	Flows	Deg.	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver.	Averag
שו		Total	нv	Total	НV	Saur	Delay	Service	Vehicles [ue Distance	Queueu	Siop Rate	Cycles S	e Sneed
		veh/h	%	veh/h	%	v/c	sec		veh	m		, tato	0,000	km/h
South	n: The	Horsley Dri	ve (S)											
1	L2	292	0.0	292	0.0	0.188	8.7	LOS A	2.7	18.8	0.28	0.63	0.28	48.0
2	T1	791	5.0	791	5.0	0.595	39.2	LOS D	13.4	97.8	0.87	0.77	0.87	29.7
3	R2	275	0.0	275	0.0	0.842	72.9	LOS E	12.1	85.0	1.00	0.92	1.17	20.4
Appro	oach	1357	2.9	1357	2.9	0.842	39.5	LOS D	13.4	97.8	0.77	0.77	0.81	29.4
East:	Poldin	g Street (E)											
4	L2	332	0.0	332	0.0	0.432	25.3	LOS C	8.1	56.9	0.70	0.77	0.70	33.2
5	T1	318	0.0	318	0.0	0.820	70.7	LOS E	8.4	59.1	1.00	0.92	1.21	27.9
Appro	oach	649	0.0	649	0.0	0.820	47.5	LOS D	8.4	59.1	0.84	0.84	0.95	29.5
North	n: The H	Horsley Driv	ve (N)											
7	L2	35	0.0	35	0.0	0.858	66.7	LOS E	17.9	130.3	1.00	0.98	1.14	29.5
8	T1	742	5.0	742	5.0	0.858	60.9	LOS E	17.9	130.3	0.99	0.98	1.14	20.3
9	R2	83	0.0	83	0.0	0.579	75.6	LOS E	3.5	24.6	1.00	0.78	1.01	26.4
Appro	oach	860	4.3	860	4.3	0.858	62.5	LOS E	17.9	130.3	1.00	0.96	1.13	21.6
West	: Poldir	ng Street (V	V)											
10	L2	18	0.0	18	0.0	0.611	37.2	LOS D	16.1	112.7	0.82	0.74	0.82	38.8
11	T1	493	0.0	493	0.0	0.611	31.6	LOS C	16.1	112.7	0.82	0.74	0.82	39.5
12	R2	465	0.0	465	0.0	0.837	49.1	LOS D	16.9	118.6	1.00	0.92	1.12	23.4
Appro	oach	976	0.0	976	0.0	0.837	40.0	LOS D	16.9	118.6	0.91	0.83	0.96	32.4
All Ve	ehicles	3842	2.0	3842	2.0	0.858	46.1	LOS D	17.9	130.3	0.87	0.84	0.94	28.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
All Pe	destrians	158	64.3	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

Site: 101 [Base AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	42	86	109	126
Green Time (sec)	36	38	17	11	8
Phase Time (sec)	42	44	23	17	14
Phase Split	30%	31%	16%	12%	10%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

Site: 103 [Base AM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 103 [Base AM Nelson/Smart]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehic	les									
Mov ID	Turn	Demand I	Flows	Arrival F	lows	Deg. Satn	Average Delav	Level of Service	Aver. Ba Queu	ck of e	Prop. Queued	Effective Stop	Aver No.	Averag e
		Total	ΗV	Total	ΗV		20.0.5		Vehicles D	istance	~~~~~	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Smai	rt Street												
1	L2	71	5.0	71	5.0	0.303	47.3	LOS D	2.0	14.4	0.95	0.75	0.95	19.8
2	T1	57	5.0	57	5.0	0.232	43.2	LOS D	1.6	11.5	0.93	0.71	0.93	20.8
3	R2	43	5.0	43	5.0	0.185	46.4	LOS D	1.2	8.6	0.93	0.73	0.93	20.0
Appro	bach	171	5.0	171	5.0	0.303	45.7	LOS D	2.0	14.4	0.94	0.73	0.94	20.2
East:	Nelsor	n Street												
4	L2	94	5.0	94	5.0	0.304	27.9	LOS C	4.3	31.3	0.76	0.68	0.76	27.5
5	T1	315	5.0	314	5.0	0.304	24.6	LOS C	4.4	32.3	0.76	0.65	0.76	12.9
6	R2	95	5.0	95	5.0	0.272	32.8	LOS C	2.2	16.1	0.80	0.74	0.80	10.6
Appro	bach	503	5.0	<mark>502^{N1}</mark>	5.0	0.304	26.8	LOS C	4.4	32.3	0.77	0.68	0.77	17.3
North	: Smar	t Street												
7	L2	140	5.0	140	5.0	0.237	29.6	LOS C	3.0	22.2	0.77	0.73	0.77	6.2
8	T1	140	5.0	140	5.0	0.428	27.7	LOS C	5.4	39.2	0.81	0.72	0.81	25.4
9	R2	94	5.0	94	5.0	0.428	31.1	LOS C	5.4	39.2	0.81	0.72	0.81	6.6
Appro	bach	374	5.0	374	5.0	0.428	29.3	LOS C	5.4	39.2	0.80	0.72	0.80	17.4
West	: Nelso	n Street												
10	L2	38	5.0	38	5.0	0.206	33.6	LOS C	3.6	26.2	0.90	0.75	0.90	11.7
11	T1	243	5.0	243	5.0	0.206	30.8	LOS C	3.6	26.6	0.91	0.75	0.91	11.7
12	R2	127	5.0	127	5.0	0.419	44.7	LOS D	3.7	27.3	1.00	0.83	1.00	22.7
Appro	bach	408	5.0	408	5.0	0.419	35.4	LOS D	3.7	27.3	0.94	0.78	0.94	17.3
All Ve	ehicles	1456	5.0	<mark>1455</mark> ^{N1}	5.0	0.428	32.1	LOS C	5.4	39.2	0.84	0.72	0.84	17.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of <i>i</i> Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate					
		ped/h	sec		ped	m							
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
All Pe	destrians	211	44.3	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 103 [Base AM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	58	0	39
Green Time (sec)	36	33	13
Phase Time (sec)	42	39	19
Phase Split	42%	39%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

SITE LAYOUT

Site: 102 [Base AM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 102 [Base AM Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov ID	Mov Turn D ID		Flows	Arrival	val Flows Deg. Satn		Deg. Average L Satn Delay S		Aver. I Qu	Back of eue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles S	Speed km/h
East: Nelson Street														
4	L2	36	5.0	36	5.0	0.141	10.1	LOS B	3.1	22.3	0.56	0.51	0.56	35.6
5	T1	363	5.0	363	5.0	0.141	6.8	LOS A	3.2	23.3	0.57	0.50	0.57	25.3
Appro	bach	399	5.0	399	5.0	0.141	7.1	LOS A	3.2	23.3	0.57	0.50	0.57	27.9
West	: Nelso	n Street												
11	T1	524	5.0	524	5.0	0.185	2.6	LOS A	1.5	11.1	0.19	0.16	0.19	27.2
12	R2	82	5.0	82	5.0	0.122	6.5	LOS A	0.4	2.9	0.17	0.54	0.17	35.4
Appro	bach	606	5.0	606	5.0	0.185	3.1	LOS A	1.5	11.1	0.18	0.21	0.18	31.5
All Ve	hicles	1005	5.0	1005	5.0	0.185	4.7	LOS A	3.2	23.3	0.34	0.33	0.34	29.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov	Description	Demand	Average	Level of <i>i</i>	Average Back	of Queue	Prop.	Effective					
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate					
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
All Pe	destrians	158	44.3	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [Base AM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	82	63
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Site: 101 [Base PM Nelson/Station/Barbara]

♦ Network: N101 [Base PM]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehi	cles									
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles	Distance		Rate	Cycles \$	Speed
0 "	D 1	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Barb	ara Street												
1	L2	168	5.0	168	5.0	0.748	39.5	LOS D	15.8	115.4	0.87	0.79	0.87	15.2
2	T1	305	5.0	305	5.0	0.748	36.1	LOS D	15.8	115.4	0.87	0.79	0.87	28.4
3	R2	169	5.0	169	5.0	0.212	20.7	LOS C	3.4	24.9	0.65	0.70	0.65	27.7
Appro	bach	643	5.0	643	5.0	0.748	32.9	LOS C	15.8	115.4	0.81	0.76	0.81	24.3
East:	Nelso	n Street												
4	L2	205	5.0	205	5.0	0.205	24.0	LOS C	5.9	42.9	0.75	0.75	0.75	27.3
5	T1	196	5.0	196	5.0	0.749	64.0	LOS E	7.0	51.0	1.00	0.89	1.09	6.0
6	R2	39	5.0	39	5.0	0.132	57.3	LOS E	1.5	10.6	0.92	0.73	0.92	19.0
Appro	bach	440	5.0	440	5.0	0.749	44.8	LOS D	7.0	51.0	0.88	0.81	0.92	17.3
North	: Statio	on Street												
7	L2	24	5.0	24	5.0	0.021	5.1	LOS A	0.2	1.1	0.21	0.48	0.21	36.1
8	T1	141	5.0	141	5.0	0.721	67.3	LOS E	5.9	43.3	1.00	0.87	1.09	23.1
9	R2	39	5.0	39	5.0	0.190	64.9	LOS E	1.5	11.0	0.94	0.73	0.94	17.5
Appro	bach	204	5.0	204	5.0	0.721	59.5	LOS E	5.9	43.3	0.90	0.80	0.96	22.8
West	: Nelso	n Street												
10	L2	48	5.0	48	5.0	0.633	69.5	LOS E	6.9	50.4	0.99	0.89	1.43	17.5
11	T1	258	5.0	258	5.0	0.633	63.8	LOS E	6.9	50.4	0.97	0.84	1.22	3.7
12	R2	159	5.0	159	5.0	0.734	65.0	LOS E	6.4	46.7	0.97	0.85	1.07	17.8
Appro	bach	465	5.0	465	5.0	0.734	64.8	LOS E	6.9	50.4	0.97	0.85	1.19	11.7
All Ve	hicles	1753	5.0	1753	5.0	0.749	47.4	LOS D	15.8	115.4	0.88	0.80	0.95	19.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
All Pe	destrians	158	64.3	LOS F			0.96	0.96					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Base PM Nelson/Station/Barbara]

♦ Network: N101 [Base PM]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Δ	П	F	F1
Phase Change Time (acc)		21	02	115
	4	51	93	115
Green Time (sec)	21	56	16	23
Phase Time (sec)	27	62	22	29
Phase Split	19%	44%	16%	21%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [Base PM Smart Lane]

♦♦ Network: N101 [Base PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	HV	Total	ΗV				Vehicles [Distance		Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sma	rt Street												
1	L2	36	5.0	36	5.0	0.191	3.7	LOS A	0.0	0.0	0.00	0.06	0.00	56.0
2	T1	323	5.0	323	5.0	0.191	0.0	LOS A	0.0	0.0	0.00	0.06	0.00	54.0
Appro	oach	359	5.0	359	5.0	0.191	0.4	NA	0.0	0.0	0.00	0.06	0.00	55.0
North	n: Smai	rt Street												
8	T1	285	5.0	285	5.0	0.319	0.3	LOS A	0.1	1.0	0.12	0.06	0.12	56.3
9	R2	29	5.0	29	5.0	0.319	7.2	LOS A	0.1	1.0	0.12	0.06	0.12	55.5
Appro	oach	315	5.0	315	5.0	0.319	0.9	NA	0.1	1.0	0.12	0.06	0.12	56.1
West	: Smar	t Lane												
10	L2	39	5.0	39	5.0	0.080	6.8	LOS A	0.1	0.7	0.40	0.63	0.40	48.5
12	R2	20	5.0	20	5.0	0.080	8.6	LOS A	0.1	0.7	0.40	0.63	0.40	48.5
Appro	oach	59	5.0	59	5.0	0.080	7.4	LOS A	0.1	0.7	0.40	0.63	0.40	48.5
All Ve	ehicles	733	5.0	733	5.0	0.319	1.2	NA	0.1	1.0	0.08	0.10	0.08	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 104 [Base PM Nelson/Horsely/Court]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Mov	ement	t Performa	ance	- Vehic	les									
Mov ID	Turn	Demand F	lows	Arrival F	lows	Deg. Satn	Average Delav	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No	Averag e
		Total	ΗV	Total	ΗV		20.0.5		Vehicles I	Distance	~	Rate	Cycles S	Speed
0 11	0	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Cour	t Road												
21	L2	131	5.0	131	5.0	0.891	66.6	LOS E	13.2	96.5	1.00	1.05	1.29	10.0
22	T1	232	5.0	232	5.0	0.891	61.5	LOS E	13.2	96.5	1.00	1.03	1.26	10.1
23b	R3	206	5.0	206	5.0	0.767	57.1	LOS E	8.8	64.6	1.00	0.91	1.11	24.3
Appro	oach	568	5.0	568	5.0	0.891	61.1	LOS E	13.2	96.5	1.00	0.99	1.21	16.1
South	nEast:	The Horsle	y Driv	е										
4b	L3	8	5.0	8	5.0	0.502	26.6	LOS C	10.9	79.4	0.70	0.78	0.70	35.6
4a	L1	462	5.0	462	5.0	0.502	24.6	LOS C	10.9	79.4	0.70	0.78	0.70	33.4
6a	R1	1229	5.0	1229	5.0	0.922	62.1	LOS E	26.1	190.5	1.00	1.03	1.25	20.0
Appro	oach	1700	5.0	1700	5.0	0.922	51.7	LOS D	26.1	190.5	0.92	0.96	1.10	22.5
North	n: The I	Horsely Driv	ve											
27a	L1	1222	5.0	1221	5.0	0.657	24.1	LOS C	16.4	119.6	0.73	0.81	0.73	39.9
28	T1	145	5.0	145	5.0	0.586	56.6	LOS E	5.0	36.8	0.99	0.80	0.99	21.5
29	R2	96	5.0	96	5.0	0.407	58.4	LOS E	3.2	23.6	0.96	0.78	0.96	16.6
Appro	oach	1463	5.0	<mark>1462^{N1}</mark>	5.0	0.657	29.6	LOS C	16.4	119.6	0.77	0.80	0.77	36.1
West	: Nelsc	on Street												
30	L2	126	5.0	126	5.0	0.852	49.7	LOS D	6.1	44.4	1.00	1.01	1.36	7.9
32a	R1	228	5.0	228	5.0	0.852	61.6	LOS E	6.1	44.8	1.00	1.02	1.33	21.9
Appro	oach	355	5.0	355	5.0	0.852	57.3	LOS E	6.1	44.8	1.00	1.02	1.34	18.5
All Ve	ehicles	4086	5.0	<mark>4085</mark> ^{N1}	5.0	0.922	45.6	LOS D	26.1	190.5	0.89	0.91	1.02	25.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	c of Queue Distance m	Prop. Queued	Effective Stop Rate				
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95				
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95				
All Pe	destrians	211	54.3	LOS E			0.95	0.95				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 104 [Base PM Nelson/Horsely/Court]

♦♦ Network: N101 [Base PM]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase C Input Phase Sequence: A, B*, C, D, E Output Phase Sequence: A, C, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E
Phase Change Time (sec)	70	0	18	48
Green Time (sec)	44	12	24	16
Phase Time (sec)	50	18	30	22
Phase Split	42%	15%	25%	18%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [Base PM Cunninghame/Horsley]

中 Network: N101 [Base PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	ement	Performa	ance	- Vehi	cles									
Mov ID	Turn	Turn Demand Flows Arrival Flows		Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bao Queu	ck of e	Prop. Queued	Effective Stop	Aver. / No.	Averag e	
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Di veh	stance m		Rate	Cycles S	Speed km/h
South	n: The	Horsley Dri	ve (S))										
1	L2	49	0.0	49	0.0	0.778	5.8	LOS A	0.0	0.0	0.00	0.03	0.00	58.1
2	T1	1728	5.0	1728	5.0	0.778	0.4	LOS A	0.0	0.0	0.00	0.02	0.00	58.6
Appro	bach	1778	4.9	1778	4.9	0.778	0.5	NA	0.0	0.0	0.00	0.02	0.00	58.6
North	: The I	Horsley Driv	ve (N)											
8	T1	1681	5.0	1681	5.0	0.445	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1681	5.0	1681	5.0	0.445	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame S	treet											
10	L2	93	0.0	93	0.0	0.304	12.1	LOS B	0.3	2.0	0.64	0.88	0.73	24.7
12	R2	7	0.0	7	0.0	1.228	1150.4	LOS F	1.6	11.0	1.00	1.11	1.54	0.4
Appro	bach	100	0.0	100	0.0	1.228	96.0	LOS F	1.6	11.0	0.66	0.89	0.79	4.6
All Ve	hicles	3559	4.8	3559	4.8	1.228	3.0	NA	1.6	11.0	0.02	0.03	0.02	49.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Base PM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles I	Distance		Rate	Cycles S	Speed
0 11	-	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: The I	Horsley Dri	ve (S))										
1	L2	442	0.0	442	0.0	0.320	13.0	LOS B	6.7	47.1	0.43	0.68	0.43	44.1
2	T1	886	5.0	886	5.0	0.637	37.0	LOS D	15.4	112.6	0.87	0.76	0.87	30.6
3	R2	293	0.0	293	0.0	0.896	79.9	LOS E	13.8	96.6	1.00	0.97	1.27	19.2
Appr	oach	1621	2.7	1621	2.7	0.896	38.2	LOS D	15.4	112.6	0.77	0.78	0.82	29.9
East:	Poldin	g Street (E)											
4	L2	206	0.0	206	0.0	0.239	23.1	LOS C	4.5	31.4	0.61	0.72	0.61	34.6
5	T1	543	0.0	543	0.0	0.895	72.3	LOS E	15.5	108.3	0.98	1.02	1.27	27.6
Appr	oach	749	0.0	749	0.0	0.895	58.7	LOS E	15.5	108.3	0.88	0.93	1.09	28.5
North	n: The H	Horsley Dri	ve (N)											
7	L2	21	0.0	21	0.0	0.921	74.5	LOS E	24.8	180.8	1.00	1.07	1.24	27.8
8	T1	944	5.0	944	5.0	0.921	68.8	LOS E	24.8	180.8	1.00	1.07	1.24	18.7
9	R2	106	0.0	106	0.0	0.626	74.2	LOS E	4.5	31.3	1.00	0.80	1.03	26.7
Appr	oach	1072	4.4	1072	4.4	0.921	69.5	LOS E	24.8	180.8	1.00	1.05	1.22	19.9
West	: Poldir	ng Street (N	N)											
10	L2	18	0.0	18	0.0	0.426	37.8	LOS D	9.6	67.1	0.77	0.68	0.77	38.5
11	T1	303	0.0	303	0.0	0.426	32.3	LOS C	9.6	67.1	0.77	0.68	0.77	39.2
12	R2	320	0.0	320	0.0	0.925	68.5	LOS E	13.3	93.4	1.00	1.00	1.38	18.8
Appr	oach	641	0.0	641	0.0	0.925	50.5	LOS D	13.3	93.4	0.89	0.84	1.08	28.7
All Ve	ehicles	4083	2.2	4083	2.2	0.925	52.1	LOS D	24.8	180.8	0.87	0.89	1.02	26.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate			
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	158	64.3	LOS F			0.96	0.96			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID07-Existing Conditions (RMS).sip8

Site: 101 [Base PM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	48	76	109	128
Green Time (sec)	42	22	27	13	6
Phase Time (sec)	48	28	33	19	12
Phase Split	34%	20%	24%	14%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 103 [Base PM Nelson/Smart]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehi	cles									
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. Ba	ck of	Prop.	Effective	Aver.	Averag
		Total	ΗV	Total	ΗV	Jain	Delay	Oervice	Vehicles D	istance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			,	ˈkm/h
South	n: Sma	rt Street												
1	L2	123	5.0	123	5.0	0.401	59.6	LOS E	4.6	33.9	0.94	0.78	0.94	17.5
2	T1	119	5.0	119	5.0	0.440	55.7	LOS E	4.4	32.4	0.93	0.74	0.93	18.3
3	R2	93	5.0	93	5.0	0.301	58.5	LOS E	3.4	25.0	0.92	0.76	0.92	17.7
Appro	bach	335	5.0	335	5.0	0.440	57.9	LOS E	4.6	33.9	0.93	0.76	0.93	17.8
East:	Nelson	n Street												
4	L2	74	5.0	74	5.0	0.314	28.1	LOS C	6.9	50.7	0.66	0.61	0.66	27.7
5	T1	474	5.0	474	5.0	0.314	24.8	LOS C	7.1	51.9	0.67	0.59	0.67	12.9
6	R2	196	5.0	196	5.0	0.452	36.7	LOS D	6.0	44.0	0.78	0.77	0.78	9.8
Appro	bach	743	5.0	743	5.0	0.452	28.2	LOS C	7.1	51.9	0.70	0.64	0.70	14.7
North	: Smar	t Street												
7	L2	76	5.0	76	5.0	0.179	49.2	LOS D	2.5	18.4	0.84	0.73	0.84	4.0
8	T1	101	5.0	101	5.0	0.440	48.5	LOS D	6.0	43.9	0.89	0.75	0.89	20.2
9	R2	69	5.0	69	5.0	0.440	51.9	LOS D	6.0	43.9	0.89	0.75	0.89	4.1
Appro	bach	246	5.0	246	5.0	0.440	49.6	LOS D	6.0	43.9	0.87	0.75	0.87	13.1
West	: Nelso	n Street												
10	L2	46	5.0	46	5.0	0.167	39.0	LOS D	5.1	37.6	0.92	0.77	0.92	10.4
11	T1	245	5.0	245	5.0	0.167	32.5	LOS C	5.1	37.6	0.87	0.73	0.87	11.2
12	R2	89	5.0	89	5.0	0.278	41.9	LOS D	3.2	23.1	0.88	0.78	0.88	23.4
Appro	bach	381	5.0	381	5.0	0.278	35.5	LOS D	5.1	37.6	0.88	0.74	0.88	16.0
All Ve	hicles	1705	5.0	1705	5.0	0.452	38.8	LOS D	7.1	51.9	0.81	0.70	0.81	15.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
All Pe	destrians	211	64.3	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 103 [Base PM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	69	0	39
Green Time (sec)	65	33	24
Phase Time (sec)	71	39	30
Phase Split	51%	28%	21%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

Site: 102 [Base PM Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov ID	v Turn Demand Flows Arrival Flows			Deg. Satn	Average Delay	Level of Service	Aver. Back of Queue		Prop. Effective Queued Stop		Aver. Averag No. e			
		Total	Total HV Total HV				Vehicles Distance		Rate		Cycles Speed			
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	Nelso	n Street												
4	L2	34	5.0	34	5.0	0.382	8.9	LOS A	6.1	44.6	0.41	0.39	0.41	36.5
5	T1	645	5.0	645	5.0	0.382	5.4	LOS A	6.1	44.6	0.41	0.38	0.41	27.5
Appro	bach	679	5.0	679	5.0	0.382	5.6	LOS A	6.1	44.6	0.41	0.38	0.41	28.9
West: Nelson Street														
11	T1	374	5.0	374	5.0	0.124	1.5	LOS A	1.0	7.2	0.10	0.08	0.10	31.5
12	R2	75	5.0	75	5.0	0.160	7.8	LOS A	0.5	3.7	0.17	0.54	0.17	34.6
Appro	bach	448	5.0	448	5.0	0.160	2.5	LOS A	1.0	7.2	0.11	0.16	0.11	33.4
All Ve	hicles	1127	5.0	1127	5.0	0.382	4.4	LOS A	6.1	44.6	0.29	0.29	0.29	30.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of <i>I</i> Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate			
P1	South Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	158	64.3	LOS F			0.96	0.96			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [Base PM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	89	67
Green Time (sec)	112	16
Phase Time (sec)	118	22
Phase Split	84%	16%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Site: 101 [Base SAT Nelson/Station/Barbara]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver.	Averag
		Total	ΗV	Total	ΗV	Call	Delay		Vehicles Distance		Queucu	Rate	Cvcles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				ˈkm/h
South	n: Barb	ara Street												
1	L2	179	5.0	179	5.0	0.805	50.7	LOS D	15.6	113.8	0.92	0.87	0.99	14.0
2	T1	232	5.0	232	5.0	0.805	47.2	LOS D	15.6	113.8	0.92	0.87	0.99	26.1
3	R2	181	5.0	181	5.0	0.272	25.7	LOS C	4.2	30.5	0.74	0.73	0.74	25.8
Appro	bach	592	5.0	592	5.0	0.805	41.7	LOS D	15.6	113.8	0.87	0.83	0.91	21.7
East:	Nelso	n Street												
4	L2	285	5.0	285	5.0	0.285	28.3	LOS C	7.0	51.0	0.81	0.79	0.81	25.8
5	T1	255	5.0	255	5.0	0.823	64.1	LOS E	7.0	51.0	1.00	0.96	1.15	6.0
6	R2	59	5.0	59	5.0	0.177	42.7	LOS D	1.6	12.0	0.69	0.67	0.69	22.0
Appro	bach	599	5.0	<mark>598</mark> ^N	¹¹ 5.0	0.823	44.9	LOS D	7.0	51.0	0.88	0.85	0.94	17.5
North	: Statio	on Street												
7	L2	28	5.0	28	5.0	0.026	5.7	LOS A	0.2	1.5	0.24	0.49	0.24	35.7
8	T1	176	5.0	176	5.0	0.792	68.5	LOS E	7.6	55.2	1.00	0.94	1.16	22.9
9	R2	33	5.0	33	5.0	0.142	62.3	LOS E	1.2	9.0	0.92	0.72	0.92	17.9
Appro	bach	237	5.0	237	5.0	0.792	60.1	LOS E	7.6	55.2	0.90	0.85	1.02	22.9
West	Nelso	n Street												
10	L2	40	5.0	40	5.0	0.564	65.4	LOS E	7.4	53.8	0.96	0.86	1.35	18.2
11	T1	287	5.0	287	5.0	0.564	59.2	LOS E	7.4	53.8	0.94	0.81	1.16	3.9
12	R2	198	5.0	198	5.0	0.810	66.8	LOS E	8.2	60.2	0.97	0.90	1.15	17.5
Appro	bach	525	5.0	525	5.0	0.810	62.5	LOS E	8.2	60.2	0.95	0.85	1.17	12.1
All Ve	hicles	1953	5.0	<mark>1952</mark> N	¹ 5.0	0.823	50.5	LOS D	15.6	113.8	0.90	0.84	1.00	18.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians											
Mov	Description	Demand	Average	Level of A	Average Back	of Queue	Prop.	Effective Stop Bate			
שו	Beconputer	ped/h	sec	Service	ped	m	Queueu				
P1	South Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	158	64.3	LOS F			0.96	0.96			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
PHASING SUMMARY

Site: 101 [Base SAT Nelson/Station/Barbara]

♦ Network: N101 [Base SAT]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	121	13	65	89
Green Time (sec)	26	46	18	26
Phase Time (sec)	32	52	24	32
Phase Split	23%	37%	17%	23%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [Base SAT Smart Lane]

Provide the second s

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	t Perform	ance	- Vehic	les									
Mov Turn Demand Flows Arriv		Arrival F	lows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Queu	ck of Ie	Prop. Queued	Effective Stop	Aver. No.	Averag e		
		Total	ΗV	Total	ΗV				Vehicles D	istance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sma	rt Street												
1	L2	36	5.0	36	5.0	0.191	3.7	LOS A	0.0	0.0	0.00	0.06	0.00	56.0
2	T1	323	5.0	323	5.0	0.191	0.0	LOS A	0.0	0.0	0.00	0.06	0.00	54.0
Appro	oach	359	5.0	359	5.0	0.191	0.4	NA	0.0	0.0	0.00	0.06	0.00	55.0
North	n: Smai	rt Street												
8	T1	285	5.0	285	5.0	0.286	0.3	LOS A	0.1	0.9	0.11	0.06	0.11	56.3
9	R2	29	5.0	29	5.0	0.286	7.1	LOS A	0.1	0.9	0.11	0.06	0.11	55.5
Appro	oach	315	5.0	315	5.0	0.286	0.9	NA	0.1	0.9	0.11	0.06	0.11	56.1
West	: Smar	t Lane												
10	L2	39	5.0	39	5.0	0.078	6.8	LOS A	0.1	0.7	0.41	0.65	0.41	48.4
12	R2	20	5.0	20	5.0	0.078	8.8	LOS A	0.1	0.7	0.41	0.65	0.41	48.4
Appro	oach	59	5.0	59	5.0	0.078	7.5	LOS A	0.1	0.7	0.41	0.65	0.41	48.4
All Ve	ehicles	733	5.0	<mark>732</mark> N1	5.0	0.286	1.2	NA	0.1	0.9	0.08	0.11	0.08	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site: 104 [Base SAT Nelson/Horsely/Court]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehic	les									
Mov ID	Turn	Demand F	lows	Arrival F	lows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. Aver No.	
		Total	ΗV	Total	ΗV				Vehicles [Distance		Rate	Cycles S	Speed
Cout		veh/h	%	veh/h	%	V/C	sec		veh	m				km/h
Sout	n: Cour		5 0	400	5.0	0.007	50.7		40.7	00.0	4.00	0.04	1 10	44.0
21	LZ	136	5.0	136	5.0	0.807	52.7	LOSD	13.7	99.8	1.00	0.94	1.10	11.9
22	11	274	5.0	274	5.0	0.807	48.7	LOS D	13.7	99.8	1.00	0.93	1.09	12.0
23b	R3	254	5.0	254	5.0	0.695	48.5	LOS D	9.4	68.4	0.96	0.85	0.98	26.3
Appro	oach	663	5.0	663	5.0	0.807	49.4	LOS D	13.7	99.8	0.98	0.90	1.05	18.7
South	hEast: ˈ	The Horsle	y Driv	е										
4b	L3	8	5.0	8	5.0	0.321	35.7	LOS D	5.4	39.7	0.76	0.76	0.76	31.7
4a	L1	204	5.0	204	5.0	0.321	33.6	LOS C	5.4	39.7	0.76	0.76	0.76	28.7
6a	R1	632	5.0	632	5.0	0.802	57.0	LOS E	11.5	84.2	1.00	0.91	1.12	21.2
Appro	oach	844	5.0	844	5.0	0.802	51.1	LOS D	11.5	84.2	0.94	0.88	1.03	22.7
North	n: The H	Horsely Driv	ve											
27a	L1	843	5.0	838	5.0	0.469	26.0	LOS C	9.8	71.6	0.71	0.78	0.71	39.0
28	T1	155	5.0	154	5.0	0.396	45.3	LOS D	5.1	37.0	0.90	0.77	0.90	24.2
29	R2	169	5.0	168	5.0	0.396	48.6	LOS D	5.1	37.0	0.90	0.79	0.90	18.9
Appro	oach	1167	5.0	<mark>1160^{N1}</mark>	5.0	0.469	31.9	LOS C	9.8	71.6	0.76	0.78	0.76	34.2
West	: Nelso	n Street												
30	L2	162	5.0	162	5.0	0.709	32.2	LOS C	4.3	31.3	1.00	0.85	1.06	10.9
32a	R1	173	5.0	173	5.0	0.709	54.0	LOS D	4.8	34.8	1.00	0.87	1.10	23.6
Appro	oach	335	5.0	335	5.0	0.709	43.5	LOS D	4.8	34.8	1.00	0.86	1.08	19.8
All Ve	ehicles	3009	5.0	<mark>3002</mark> N1	5.0	0.807	42.5	LOS D	13.7	99.8	0.89	0.84	0.93	25.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	c of Queue Distance m	Prop. Queued	Effective Stop Rate	
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95	
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95	
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95	
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95	
All Pe	destrians	211	54.3	LOS E			0.95	0.95	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 104 [Base SAT Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase C Input Phase Sequence: A, B*, C, D, E Output Phase Sequence: A, C, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E
Phase Change Time (sec)	88	0	18	55
Green Time (sec)	26	12	31	27
Phase Time (sec)	32	18	37	33
Phase Split	27%	15%	31%	28%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [Base SAT Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	ovement Performance - Vehicles													
Mov ID	Mov Turn Demand Flows Arrival Flows ID		Deg. Satn	Average Delay	Level of Service	Aver. Ba Queu	ck of e	Prop. Queued	Effective Stop	Aver. No.	Averag e			
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles D veh	istance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	62	0.0	62	0.0	0.427	5.6	LOS A	0.0	0.0	0.00	0.05	0.00	58.6
2	T1	1380	5.0	1380	5.0	0.427	0.1	LOS A	0.0	0.0	0.00	0.02	0.00	59.2
Appro	bach	1442	4.8	1442	4.8	0.427	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.2
North: The Horsley Drive (N)														
8	T1	1521	5.0	1521	5.0	0.403	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1521	5.0	1521	5.0	0.403	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	: Cunn	inghame S	treet											
10	L2	117	0.0	117	0.0	0.205	10.0	LOS B	0.3	2.0	0.59	0.83	0.59	27.4
12	R2	18	0.0	18	0.0	2.216	1584.7	LOS F	4.7	32.7	1.00	1.30	2.46	0.3
Appro	bach	135	0.0	135	0.0	2.216	219.2	LOS F	4.7	32.7	0.65	0.89	0.84	2.0
All Ve	hicles	3098	4.7	3098	4.7	2.216	9.7	NA	4.7	32.7	0.03	0.05	0.04	34.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Base SAT Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles	Distance		Rate	Cycles	Speed
0 11	T I I	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	h: The I	Horsley Dr	ive (S)											
1	L2	389	0.0	389	0.0	0.260	9.0	LOSA	3.8	26.3	0.31	0.65	0.31	47.7
2	T1	626	5.0	626	5.0	0.513	40.6	LOS D	10.5	76.7	0.86	0.74	0.86	29.2
3	R2	283	0.0	283	0.0	0.748	63.6	LOS E	11.5	80.2	1.00	0.87	1.04	22.2
Appro	bach	1299	2.4	1299	2.4	0.748	36.1	LOS D	11.5	80.2	0.73	0.74	0.74	30.7
East:	Poldin	g Street (E	E)											
4	L2	312	0.0	312	0.0	0.341	16.7	LOS B	5.6	39.2	0.54	0.72	0.54	39.2
5	T1	327	0.0	327	0.0	0.748	63.7	LOS E	8.7	61.2	0.98	0.86	1.09	29.4
6	R2	17	0.0	17	0.0	0.748	70.0	LOS E	8.7	61.2	1.00	0.88	1.08	28.8
Appro	bach	656	0.0	656	0.0	0.748	41.5	LOS D	8.7	61.2	0.78	0.80	0.83	31.9
North	: The H	lorsley Dri	ve (N)											
7	L2	38	0.0	38	0.0	0.736	55.7	LOS E	14.6	102.0	0.97	0.85	0.98	32.3
8	T1	676	0.0	676	0.0	0.736	49.6	LOS D	14.6	102.0	0.96	0.84	0.97	23.1
9	R2	96	0.0	96	0.0	0.489	39.6	LOS D	2.2	15.1	0.98	0.77	0.98	35.7
Appro	bach	809	0.0	809	0.0	0.736	48.7	LOS D	14.6	102.0	0.96	0.83	0.97	25.4
West	: Poldir	ng Street (N	W)											
10	L2	31	0.0	31	0.0	0.418	37.0	LOS D	9.3	65.2	0.76	0.67	0.76	38.7
11	T1	285	0.0	285	0.0	0.418	31.5	LOS C	9.3	65.2	0.76	0.67	0.76	39.4
12	R2	317	0.0	317	0.0	0.696	41.5	LOS D	9.9	69.0	0.96	0.84	0.96	25.8
Appro	bach	633	0.0	633	0.0	0.696	36.8	LOS D	9.9	69.0	0.86	0.76	0.86	33.4
All Ve	ehicles	3397	0.9	3397	0.9	0.748	40.3	LOS D	14.6	102.0	0.82	0.78	0.83	30.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	158	64.3	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101 [Base SAT Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, C*, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E	F	F1
Phase Change Time (sec)	0	31	44	78	105	119
Green Time (sec)	25	7	28	21	8	15
Phase Time (sec)	31	13	34	27	14	21
Phase Split	22%	9%	24%	19%	10%	15%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Normal Movement

Site: 103 [Base SAT Nelson/Smart]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehic	cles									
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of Je	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles [Distance		Rate	Cycles	Speed
0 11	0	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Smai	rt Street												
1	L2	144	5.0	144	5.0	0.417	57.2	LOS E	5.3	39.0	0.93	0.79	0.93	17.9
2	T1	55	5.0	55	5.0	0.185	50.9	LOS D	2.3	17.0	0.88	0.69	0.88	19.0
3	R2	76	5.0	76	5.0	0.185	54.4	LOS D	2.3	17.0	0.88	0.73	0.88	18.5
Appro	bach	275	5.0	275	5.0	0.417	55.2	LOS E	5.3	39.0	0.90	0.75	0.90	18.3
East:	Nelsor	n Street												
4	L2	113	5.0	112	5.0	0.277	29.4	LOS C	5.8	42.7	0.67	0.65	0.67	27.0
5	T1	346	5.0	346	5.0	0.277	26.1	LOS C	6.1	44.2	0.67	0.60	0.67	12.4
6	R2	77	5.0	77	5.0	0.179	34.0	LOS C	2.1	15.4	0.70	0.70	0.70	10.3
Appro	oach	536	5.0	<mark>535</mark> ^N	¹ 5.0	0.277	27.9	LOS C	6.1	44.2	0.68	0.62	0.68	17.4
North	: Smar	t Street												
7	L2	86	5.0	86	5.0	0.204	49.5	LOS D	2.9	21.1	0.84	0.74	0.84	4.0
8	T1	83	5.0	83	5.0	0.414	48.2	LOS D	5.6	40.9	0.88	0.75	0.88	20.2
9	R2	77	5.0	77	5.0	0.414	51.6	LOS D	5.6	40.9	0.88	0.75	0.88	4.1
Appro	oach	246	5.0	246	5.0	0.414	49.7	LOS D	5.6	40.9	0.87	0.75	0.87	11.8
West	: Nelso	n Street												
10	L2	44	5.0	44	5.0	0.166	33.4	LOS C	4.4	31.9	0.81	0.70	0.81	11.7
11	T1	234	5.0	234	5.0	0.166	30.2	LOS C	4.4	32.1	0.82	0.68	0.82	11.8
12	R2	145	5.0	145	5.0	0.420	42.4	LOS D	5.1	37.3	0.88	0.80	0.88	23.3
Appro	oach	423	5.0	423	5.0	0.420	34.7	LOS C	5.1	37.3	0.84	0.73	0.84	18.0
All Ve	ehicles	1480	5.0	<mark>1479</mark> N	¹ 5.0	0.420	38.6	LOS D	6.1	44.2	0.80	0.70	0.80	16.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	lovement Performance - Pedestrians										
Mov ID	Description	Demand Flow	Average Delay	Level of A Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate			
		ped/h	sec		ped	m					
P1	South Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	211	64.3	LOS F			0.96	0.96			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 103 [Base SAT Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	
Phase Change Time (sec)	72	0	39	
Green Time (sec)	62	33	27	
Phase Time (sec)	68	39	33	
Phase Split	49%	28%	24%	

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

Site: 102 [Base SAT Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	Iovement Performance - Vehicles													
Mov ID	Turn	Demand F	lows	Arrival F	lows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles I veh	Distance m		Rate	Cycles S	Speed km/h
East:	Nelso	n Street												
4	L2	167	5.0	167	5.0	0.425	11.8	LOS B	8.8	64.4	0.58	0.61	0.58	34.3
5	T1	552	5.0	551	5.0	0.425	4.1	LOS A	8.8	64.4	0.29	0.29	0.29	29.0
Appro	bach	719	5.0	<mark>718</mark> N1	5.0	0.425	5.9	LOS A	8.8	64.4	0.35	0.37	0.35	31.9
West	: Nelso	n Street												
11	T1	625	5.0	625	5.0	0.207	2.2	LOS A	1.8	13.0	0.14	0.13	0.14	28.5
12	R2	121	5.0	121	5.0	0.297	12.8	LOS B	1.5	11.0	0.32	0.60	0.32	31.9
Appro	bach	746	5.0	746	5.0	0.297	3.9	LOS A	1.8	13.0	0.17	0.20	0.17	30.6
All Ve	ehicles	1465	5.0	1465	5.0	0.425	4.9	LOS A	8.8	64.4	0.26	0.28	0.26	31.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
All Pe	destrians	158	64.3	LOS F			0.96	0.96					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 102 [Base SAT Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	79	57
Green Time (sec)	112	16
Phase Time (sec)	118	22
Phase Split	84%	16%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Appendix D Future Conditions SIDRA Assessment

r:

SITE LAYOUT

Site: 101 [FU AM Nelson/Station/Barbara]

New Site Site Category: (None) Signals - Fixed Time Isolated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Created: Friday, 16 April 2021 2:54:32 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID08-Future Conditions (RMS).sip8

Site: 101 [FU AM Nelson/Station/Barbara]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delav	Level of Service	Aver. Ba Quei	ack of Je	Prop. Queued	Effective Stop	Aver No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles [Distance		Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Barb	ara Street												
1	L2	98	5.0	98	5.0	0.605	41.9	LOS D	6.8	49.3	0.95	0.81	0.95	15.0
2	T1	148	5.0	148	5.0	0.605	38.5	LOS D	6.8	49.3	0.95	0.81	0.95	27.9
3	R2	91	5.0	91	5.0	0.148	15.5	LOS B	1.2	8.8	0.67	0.68	0.67	30.0
Appro	bach	337	5.0	337	5.0	0.605	33.3	LOS C	6.8	49.3	0.88	0.77	0.88	23.7
East:	Nelso	n Street												
4	L2	192	5.0	192	5.0	0.254	14.6	LOS B	2.2	16.1	0.41	0.61	0.41	31.3
5	T1	163	5.0	163	5.0	0.617	27.2	LOS C	3.7	27.2	0.78	0.63	0.78	12.1
6	R2	9	5.0	9	5.0	0.053	52.4	LOS D	0.3	2.1	1.00	0.68	1.00	19.9
Appro	bach	364	5.0	364	5.0	0.617	21.2	LOS C	3.7	27.2	0.59	0.62	0.59	24.9
North	: Statio	on Street												
7	L2	108	5.0	108	5.0	0.088	4.5	LOS A	0.5	3.3	0.23	0.50	0.23	36.5
8	T1	295	5.0	295	5.0	0.630	31.5	LOS C	7.4	53.7	0.88	0.75	0.88	29.8
9	R2	115	5.0	115	5.0	0.213	31.6	LOS C	2.6	18.8	0.79	0.73	0.79	24.5
Appro	bach	518	5.0	518	5.0	0.630	25.8	LOS C	7.4	53.7	0.72	0.69	0.72	29.5
West	: Nelso	n Street												
10	L2	40	5.0	40	5.0	0.427	40.4	LOS D	2.8	20.2	0.95	0.81	1.16	23.2
11	T1	192	5.0	192	5.0	0.427	41.8	LOS D	3.2	23.3	0.96	0.79	1.04	5.4
12	R2	105	5.0	105	5.0	0.587	52.9	LOS D	3.2	23.2	1.00	0.80	1.03	19.9
Appro	bach	337	5.0	337	5.0	0.587	45.1	LOS D	3.2	23.3	0.97	0.79	1.05	14.8
All Ve	hicles	1556	5.0	1556	5.0	0.630	30.5	LOS C	7.4	53.7	0.78	0.71	0.80	24.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
All Pe	destrians	158	44.3	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101 [FU AM Nelson/Station/Barbara]

♦ Network: N101 [Future AM]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	80	0	28	64
Green Time (sec)	14	22	30	10
Phase Time (sec)	20	28	36	16
Phase Split	20%	28%	36%	16%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

Site: 104 [FU AM Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 104 [FU AM Nelson/Horsely/Court]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov	Turn	Demand	Flows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver. /	Averag
		Total	ΗV	Total	ΗV	Jaur	Delay		Vehicles	Distance	Queueu	Rate	Cvcles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Cour	t Road												
21	L2	46	5.0	46	5.0	0.894	72.1	LOS E	8.4	61.6	1.00	1.10	1.37	9.4
22	T1	159	5.0	159	5.0	0.894	68.7	LOS E	8.4	61.6	1.00	1.10	1.37	9.4
23b	R3	149	5.0	149	5.0	0.772	64.6	LOS E	5.7	41.3	1.00	0.91	1.18	22.6
Appro	bach	355	5.0	355	5.0	0.894	67.4	LOS E	8.4	61.6	1.00	1.02	1.29	15.8
South	nEast: ⁻	The Horsle	ey Driv	е										
4b	L3	11	5.0	11	5.0	0.326	22.2	LOS C	6.3	45.8	0.59	0.72	0.59	37.9
4a	L1	314	5.0	314	5.0	0.326	20.2	LOS C	6.3	45.8	0.59	0.72	0.59	36.3
6a	R1	1116	5.0	1116	5.0	0.920	64.2	LOS E	23.7	173.2	1.00	1.03	1.26	19.6
Appro	bach	1440	5.0	1440	5.0	0.920	54.3	LOS D	23.7	173.2	0.91	0.96	1.11	21.9
North	: The H	Horsely Dr	ive											
27a	L1	1272	5.0	1272	5.0	0.685	23.8	LOS C	17.6	128.7	0.74	0.81	0.74	40.1
28	T1	162	5.0	162	5.0	0.586	52.4	LOS D	6.4	46.5	0.97	0.81	0.97	22.4
29	R2	208	5.0	208	5.0	0.586	55.7	LOS E	6.4	46.5	0.97	0.81	0.97	17.2
Appro	bach	1642	5.0	1642	5.0	0.685	30.7	LOS C	17.6	128.7	0.79	0.81	0.79	35.1
West	: Nelso	n Street												
30	L2	104	5.0	104	5.0	0.864	61.4	LOS E	10.5	76.9	1.00	1.05	1.43	6.7
32a	R1	440	5.0	440	5.0	0.864	62.2	LOS E	10.5	76.9	1.00	1.05	1.33	21.8
Appro	bach	544	5.0	544	5.0	0.864	62.0	LOS E	10.5	76.9	1.00	1.05	1.35	19.7
All Ve	ehicles	3981	5.0	3981	5.0	0.920	46.8	LOS D	23.7	173.2	0.88	0.92	1.03	25.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of a Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95					
All Pe	destrians	211	54.3	LOS E			0.95	0.95					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 104 [FU AM Nelson/Horsely/Court]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Split Phasing Reference Phase: Phase C Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary											
Phase	Α	В	С	D							
Phase Change Time (sec)	48	94	0	21							
Green Time (sec)	40	20	15	21							
Phase Time (sec)	46	26	21	27							
Phase Split	38%	22%	18%	23%							

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

V Site: 101 [FU AM Smart Lane]

New Site Site Category: (None) Giveway / Yield (Two-Way)

V Site: 101 [FU AM Smart Lane]

♦ Network: N101 [Future AM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	Novement Performance - Vehicles													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	HV	Total	ΗV				Vehicles [Distance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Sma	rt Street												
1	L2	75	5.0	75	5.0	0.126	3.7	LOS A	0.0	0.0	0.00	0.18	0.00	54.8
2	T1	159	5.0	159	5.0	0.126	0.0	LOS A	0.0	0.0	0.00	0.18	0.00	44.5
Appr	oach	234	5.0	234	5.0	0.126	1.2	NA	0.0	0.0	0.00	0.18	0.00	52.6
North	n: Smai	rt Street												
8	T1	426	5.0	426	5.0	0.460	0.4	LOS A	0.4	3.2	0.19	0.12	0.19	53.6
9	R2	101	5.0	101	5.0	0.460	6.7	LOS A	0.4	3.2	0.19	0.12	0.19	54.6
Appr	oach	527	5.0	527	5.0	0.460	1.6	NA	0.4	3.2	0.19	0.12	0.19	54.0
West	: Smar	t Lane												
10	L2	66	5.0	66	5.0	0.188	6.2	LOS A	0.2	1.6	0.30	0.63	0.30	47.8
12	R2	57	5.0	57	5.0	0.188	9.9	LOS A	0.2	1.6	0.30	0.63	0.30	47.8
Appr	oach	123	5.0	123	5.0	0.188	7.9	LOS A	0.2	1.6	0.30	0.63	0.30	47.8
All Ve	ehicles	884	5.0	884	5.0	0.460	2.4	NA	0.4	3.2	0.16	0.21	0.16	52.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

V Site: 101 [FU AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

V Site: 101 [FU AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	lovement Performance - Vehicles													
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Queu	ck of e	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles D veh	istance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	54	0.0	54	0.0	0.485	5.6	LOS A	0.0	0.0	0.00	0.05	0.00	58.5
2	T1	1493	5.0	1493	5.0	0.485	0.1	LOS A	0.6	4.6	0.00	0.02	0.00	59.3
Appro	bach	1546	4.8	1546	4.8	0.485	0.3	NA	0.6	4.6	0.00	0.02	0.00	59.3
North	: The H	Horsley Driv	ve (N)											
8	T1	1748	5.0	1748	5.0	0.463	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1748	5.0	1748	5.0	0.463	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame St	treet											
10	L2	211	0.0	211	0.0	0.342	12.5	LOS B	0.4	3.1	0.62	0.86	0.72	24.2
Appro	bach	211	0.0	211	0.0	0.342	12.5	LOS B	0.4	3.1	0.62	0.86	0.72	24.2
All Ve	hicles	3505	4.6	3505	4.6	0.485	0.9	NA	0.6	4.6	0.04	0.06	0.04	56.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: 101 [FU AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 101 [FU AM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles I veh	Distance m		Rate	Cycles S	Speed km/h
Sout	n: The	Horsley Dri	ve (S))										
1	L2	292	5.0	292	5.0	0.195	9.3	LOS A	2.9	21.2	0.29	0.63	0.29	47.3
2	T1	894	5.0	894	5.0	0.701	39.0	LOS D	16.4	120.0	0.89	0.79	0.89	29.8
3	R2	300	5.0	300	5.0	0.915	83.5	LOS F	14.6	106.6	1.00	0.99	1.32	18.6
Appr	oach	1485	5.0	1485	5.0	0.915	42.1	LOS D	16.4	120.0	0.80	0.80	0.86	28.4
East:	Poldin	g Street (E)											
4	L2	332	5.0	332	5.0	0.445	28.2	LOS C	8.7	63.6	0.72	0.77	0.72	31.6
5	T1	325	5.0	325	5.0	0.934	87.0	LOS F	9.9	72.2	1.00	1.06	1.48	24.8
Appr	oach	657	5.0	657	5.0	0.934	57.4	LOS E	9.9	72.2	0.86	0.92	1.10	26.8
North	n: The I	Horsley Driv	ve (N)											
7	L2	35	5.0	35	5.0	0.917	78.0	LOS E	20.5	149.8	1.00	1.07	1.26	27.0
8	T1	773	5.0	773	5.0	0.917	72.3	LOS E	20.5	149.8	1.00	1.08	1.27	18.0
9	R2	83	5.0	83	5.0	0.733	80.7	LOS F	3.7	27.0	1.00	0.84	1.17	25.4
Appr	oach	891	5.0	891	5.0	0.917	73.3	LOS E	20.5	149.8	1.00	1.05	1.26	19.4
West	: Poldii	ng Street (V	V)											
10	L2	18	5.0	18	5.0	0.631	37.6	LOS D	16.3	119.1	0.83	0.75	0.83	38.5
11	T1	493	5.0	493	5.0	0.631	32.0	LOS C	16.3	119.1	0.83	0.75	0.83	39.3
12	R2	465	5.0	465	5.0	0.870	56.9	LOS E	18.7	136.6	1.00	0.96	1.21	21.3
Appr	oach	976	5.0	976	5.0	0.870	44.0	LOS D	18.7	136.6	0.91	0.85	1.01	31.0
All Ve	ehicles	4008	5.0	4008	5.0	0.934	52.0	LOS D	20.5	149.8	0.88	0.88	1.02	26.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pedestrians		158	64.3	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID08-Future Conditions (RMS).sip8

Site: 101 [FU AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	41	86	108	123
Green Time (sec)	35	39	16	9	11
Phase Time (sec)	41	45	22	15	17
Phase Split	29%	32%	16%	11%	12%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

Site: 103 [FU AM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 103 [FU AM Nelson/Smart]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehi	cles									
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. Ba	ck of	Prop.	Effective	Aver.	Averag
U		Total	ΗV	Total	ΗV	Jaur	Delay	Service	Vehicles D	istance	Queueu	Rate	Cvcles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			,	ˈkm/h
South	n: Sma	rt Street												
1	L2	75	5.0	75	5.0	0.321	47.4	LOS D	2.1	15.3	0.95	0.76	0.95	19.8
2	T1	57	5.0	57	5.0	0.232	43.2	LOS D	1.6	11.5	0.93	0.71	0.93	20.8
3	R2	43	5.0	43	5.0	0.207	46.8	LOS D	1.2	8.7	0.93	0.73	0.93	19.9
Appro	bach	175	5.0	175	5.0	0.321	45.9	LOS D	2.1	15.3	0.94	0.73	0.94	20.1
East:	Nelso	n Street												
4	L2	94	5.0	94	5.0	0.298	26.5	LOS C	4.3	31.5	0.74	0.67	0.74	28.0
5	T1	329	5.0	329	5.0	0.298	23.2	LOS C	4.5	32.5	0.74	0.64	0.74	13.4
6	R2	95	5.0	95	5.0	0.288	33.0	LOS C	2.2	16.2	0.81	0.74	0.81	10.6
Appro	bach	518	5.0	518	5.0	0.298	25.6	LOS C	4.5	32.5	0.75	0.66	0.75	17.6
North	: Smar	t Street												
7	L2	153	5.0	153	5.0	0.313	32.0	LOS C	3.5	25.7	0.81	0.75	0.81	5.8
8	T1	140	5.0	140	5.0	0.476	29.5	LOS C	5.5	40.5	0.84	0.73	0.84	24.9
9	R2	94	5.0	94	5.0	0.476	32.8	LOS C	5.5	40.5	0.84	0.73	0.84	6.3
Appro	bach	386	5.0	386	5.0	0.476	31.3	LOS C	5.5	40.5	0.83	0.74	0.83	16.5
West	: Nelso	n Street												
10	L2	38	5.0	38	5.0	0.262	33.0	LOS C	4.3	31.6	0.90	0.76	0.90	11.9
11	T1	300	5.0	300	5.0	0.262	30.4	LOS C	4.4	32.0	0.92	0.77	0.92	11.8
12	R2	146	5.0	146	5.0	0.462	44.1	LOS D	4.3	31.3	1.00	0.84	1.00	22.9
Appro	bach	484	5.0	484	5.0	0.462	34.7	LOS C	4.4	32.0	0.94	0.79	0.94	17.4
All Ve	hicles	1563	5.0	1563	5.0	0.476	32.1	LOS C	5.5	40.5	0.85	0.73	0.85	17.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance -	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	destrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 103 [FU AM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	56	0	37
Green Time (sec)	38	31	13
Phase Time (sec)	44	37	19
Phase Split	44%	37%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

SITE LAYOUT

Site: 102 [FU AM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 102 [FU AM Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles I	Distance		Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	Nelso	n Street												
4	L2	36	5.0	36	5.0	0.148	10.1	LOS B	3.2	23.3	0.56	0.51	0.56	35.7
5	T1	382	5.0	382	5.0	0.148	6.9	LOS A	3.4	24.8	0.58	0.51	0.58	25.3
Appro	bach	418	5.0	418	5.0	0.148	7.2	LOS A	3.4	24.8	0.58	0.51	0.58	27.7
West	: Nelso	n Street												
11	T1	600	5.0	600	5.0	0.212	2.9	LOS A	2.0	14.8	0.21	0.18	0.21	26.1
12	R2	82	5.0	82	5.0	0.126	6.8	LOS A	0.4	3.2	0.19	0.54	0.19	35.1
Appro	bach	682	5.0	682	5.0	0.212	3.4	LOS A	2.0	14.8	0.21	0.23	0.21	30.5
All Ve	ehicles	1100	5.0	1100	5.0	0.212	4.8	LOS A	3.4	24.8	0.35	0.33	0.35	29.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of <i>I</i> Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
All Pe	destrians	158	44.3	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [FU AM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	82	63
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Site: 101 [FU PM Nelson/Station/Barbara]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehi	cles									
Mov	Turn	Demand F	Flows	Arrival	Flows	Deg.	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver.	Averag
שו		Total	НV	Total	НV	Sam	Delay	Service	Vehicles	ue Distance	Queueu	Si0p Rate	Cvcles	e Sneed
		veh/h	%	veh/h	%	v/c	sec		veh	m		, tato	0,000	km/h
South	n: Barb	ara Street												
1	L2	168	5.0	168	5.0	0.840	40.6	LOS D	14.9	108.9	0.94	0.94	1.09	15.1
2	T1	334	5.0	334	5.0	0.840	37.2	LOS D	14.9	108.9	0.94	0.94	1.09	28.2
3	R2	169	5.0	169	5.0	0.231	17.2	LOS B	2.6	18.8	0.70	0.71	0.70	29.2
Appro	oach	672	5.0	672	5.0	0.840	33.0	LOS C	14.9	108.9	0.88	0.88	0.99	24.5
East:	Nelso	n Street												
4	L2	205	5.0	205	5.0	0.222	19.3	LOS B	4.1	29.9	0.71	0.73	0.71	29.2
5	T1	196	5.0	196	5.0	0.828	50.1	LOS D	6.2	45.3	1.00	0.97	1.21	7.4
6	R2	96	5.0	96	5.0	0.382	31.9	LOS C	2.0	14.6	0.71	0.68	0.71	24.9
Appro	bach	497	5.0	497	5.0	0.828	33.8	LOS C	6.2	45.3	0.83	0.82	0.91	20.7
North	: Statio	on Street												
7	L2	62	5.0	62	5.0	0.055	5.3	LOS A	0.3	2.5	0.27	0.51	0.27	35.9
8	T1	160	5.0	160	5.0	0.770	50.4	LOS D	5.0	36.6	1.00	0.94	1.20	25.8
9	R2	67	5.0	67	5.0	0.313	48.3	LOS D	1.9	14.0	0.95	0.75	0.95	20.4
Appro	bach	289	5.0	289	5.0	0.770	40.3	LOS D	5.0	36.6	0.83	0.80	0.94	25.7
West	: Nelso	n Street												
10	L2	91	5.0	91	5.0	0.700	46.9	LOS D	5.1	37.6	1.00	0.94	1.43	21.5
11	T1	258	5.0	258	5.0	0.700	45.9	LOS D	5.1	37.6	0.99	0.89	1.24	4.9
12	R2	159	5.0	159	5.0	0.797	53.8	LOS D	5.0	36.4	0.99	0.92	1.25	19.7
Appro	bach	507	5.0	507	5.0	0.797	48.6	LOS D	5.1	37.6	0.99	0.91	1.27	15.0
All Ve	ehicles	1965	5.0	1965	5.0	0.840	38.3	LOS D	14.9	108.9	0.89	0.86	1.04	22.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	158	44.3	LOS E			0.94	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [FU PM Nelson/Station/Barbara]

♦ Network: N101 [Future PM]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	11	31	73	91
Green Time (sec)	14	36	12	14
Phase Time (sec)	20	42	18	20
Phase Split	20%	42%	18%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 104 [FU PM Nelson/Horsely/Court]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total	HV	Total	HV				Vehicles	Distance		Rate	Cycles S	Speed
South		veh/h	%	veh/h	%	V/C	sec		veh	m				km/h
21	1. COUI	131	5.0	121	5.0	0.030	75.0		1/1 2	103.5	1.00	1 13	1 40	0.1
21	L2 T1	222	5.0	232	5.0	0.330	60.0		14.2	103.5	1.00	1.10	1.40	0.3
22	н По	202	5.0	202	5.0	0.930	50.0		14.2	103.5	1.00	1.10	1.30	9.3
230	R3	206	5.0	200	5.0	0.801	59.9	LUSE	9.1	00.0	1.00	0.93	1.10	23.7
Appro	bach	568	5.0	568	5.0	0.930	67.1	LOSE	14.2	103.5	1.00	1.05	1.29	15.1
South	nEast: ˈ	The Horsle	y Driv	е										
4b	L3	8	5.0	8	5.0	0.522	25.2	LOS C	11.6	84.6	0.69	0.78	0.69	36.3
4a	L1	504	5.0	504	5.0	0.522	23.1	LOS C	11.6	84.6	0.69	0.78	0.69	34.3
6a	R1	1229	5.0	1229	5.0	0.901	56.3	LOS E	24.7	180.5	1.00	1.00	1.19	21.3
Appro	bach	1742	5.0	1742	5.0	0.901	46.6	LOS D	24.7	180.5	0.91	0.93	1.05	24.0
North	: The ł	Horsely Dri	ve											
27a	L1	1222	5.0	1222	5.0	0.667	24.8	LOS C	16.7	121.9	0.75	0.81	0.75	39.6
28	T1	145	5.0	145	5.0	0.670	59.8	LOS E	5.2	38.2	1.00	0.83	1.05	20.8
29	R2	96	5.0	96	5.0	0.465	60.8	LOS E	3.3	24.3	0.98	0.78	0.98	16.1
Appro	bach	1463	5.0	1463	5.0	0.670	30.7	LOS C	16.7	121.9	0.79	0.81	0.79	35.6
West	: Nelso	n Street												
30	L2	126	5.0	126	5.0	0.832	51.1	LOS D	6.8	49.3	1.00	1.00	1.34	7.7
32a	R1	264	5.0	264	5.0	0.832	60.0	LOS E	6.9	50.1	1.00	1.00	1.28	22.2
Appro	bach	391	5.0	391	5.0	0.832	57.1	LOS E	6.9	50.1	1.00	1.00	1.30	19.0
All Ve	ehicles	4164	5.0	4164	5.0	0.930	44.8	LOS D	24.7	180.5	0.89	0.91	1.01	26.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95					
All Pe	destrians	211	54.3	LOS E			0.95	0.95					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 104 [FU PM Nelson/Horsely/Court]

♦ Network: N101 [Future PM]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase C Input Phase Sequence: A, B*, C, D, E Output Phase Sequence: A, C, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E
Phase Change Time (sec)	69	0	20	49
Green Time (sec)	45	14	23	14
Phase Time (sec)	51	20	29	20
Phase Split	43%	17%	24%	17%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [FU PM Smart Lane]

♦ Network: N101 [Future PM]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles I	Distance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Sma	rt Street												
1	L2	212	5.0	212	5.0	0.289	3.7	LOS A	0.0	0.0	0.00	0.22	0.00	54.4
2	T1	323	5.0	323	5.0	0.289	0.0	LOS A	0.0	0.0	0.00	0.22	0.00	42.0
Appr	oach	535	5.0	535	5.0	0.289	1.5	NA	0.0	0.0	0.00	0.22	0.00	52.3
North	n: Smai	t Street												
8	T1	293	5.0	293	5.0	0.418	3.0	LOS A	1.2	8.9	0.56	0.34	0.71	44.2
9	R2	205	5.0	205	5.0	0.418	9.4	LOS A	1.2	8.9	0.56	0.34	0.71	50.8
Appr	oach	498	5.0	498	5.0	0.418	5.6	NA	1.2	8.9	0.56	0.34	0.71	48.4
West	: Smar	t Lane												
10	L2	215	5.0	215	5.0	0.670	11.0	LOS B	1.9	14.1	0.59	0.96	1.17	41.2
12	R2	196	5.0	196	5.0	0.670	17.6	LOS C	1.9	14.1	0.59	0.96	1.17	41.2
Appr	oach	411	5.0	411	5.0	0.670	14.2	LOS B	1.9	14.1	0.59	0.96	1.17	41.2
All Ve	ehicles	1443	5.0	1443	5.0	0.670	6.5	NA	1.9	14.1	0.36	0.48	0.58	46.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: 101 [FU PM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	ement	Performa	ance	- Vehi	cles									
Mov ID	Turn	Demand F	-lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles [veh	Distance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	49	0.0	49	0.0	0.471	5.6	LOS A	6.8	49.2	0.00	0.03	0.00	59.0
2	T1	1728	5.0	1728	5.0	0.471	0.1	LOS A	6.8	49.2	0.00	0.02	0.00	59.4
Appro	bach	1778	4.9	1778	4.9	0.471	0.2	NA	6.8	49.2	0.00	0.02	0.00	59.4
North	: The H	Horsley Driv	ve (N)											
8	T1	1681	5.0	1681	5.0	0.445	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1681	5.0	1681	5.0	0.445	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame St	treet											
10	L2	168	0.0	168	0.0	0.488	20.4	LOS C	0.5	3.4	0.74	0.97	1.01	17.6
Appro	bach	168	0.0	168	0.0	0.488	20.4	LOS C	0.5	3.4	0.74	0.97	1.01	17.6
All Ve	hicles	3627	4.7	3627	4.7	0.488	1.1	NA	6.8	49.2	0.03	0.05	0.05	56.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [FU PM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total	HV	Total	HV				Vehicles [Distance		Rate	Cycles S	Speed
Sout	h: Tho	veh/h Hereley/ Dri	%	veh/h	%	V/C	sec		veh	m				km/h
Jour			ve (3)	440	5.0	0.004	10.0		7.0	E7 4	0.54	0.70	0.54	44.0
	LZ T4	442	5.0	44Z	5.0	0.301	10.3	LOSB	7.8	57.1	0.51	0.72	0.51	41.3
2	11	937	5.0	937	5.0	0.950	//.4	LOSE	16.4	120.0	0.98	1.14	1.33	19.9
3	R2	305	5.0	305	5.0	0.968	100.6	LOS F	16.4	120.0	1.00	1.05	1.48	16.3
Appr	oach	1684	5.0	1684	5.0	0.968	65.6	LOS E	16.4	120.0	0.86	1.01	1.14	22.0
East	: Poldin	g Street (E)											
4	L2	206	5.0	206	5.0	0.249	25.3	LOS C	4.8	34.9	0.62	0.72	0.62	33.2
5	T1	565	5.0	565	5.0	0.951	87.2	LOS F	17.7	129.2	0.99	1.12	1.43	24.8
Appr	oach	772	5.0	772	5.0	0.951	70.7	LOS E	17.7	129.2	0.89	1.02	1.21	25.8
North	n: The I	Horsley Driv	ve (N)											
7	L2	21	5.0	21	5.0	0.986	100.8	LOS F	30.5	222.8	1.00	1.23	1.43	23.2
8	T1	944	5.0	944	5.0	0.986	95.3	LOS F	30.5	222.8	0.99	1.23	1.45	14.8
9	R2	197	5.0	197	5.0	0.976	73.9	LOS E	7.0	51.1	1.00	1.04	1.58	26.7
Appr	oach	1162	5.0	1162	5.0	0.986	91.8	LOS F	30.5	222.8	0.99	1.20	1.47	17.1
West	t: Poldir	ng Street (V	N)											
10	L2	18	5.0	18	5.0	0.431	36.7	LOS D	9.5	69.1	0.76	0.67	0.76	38.9
11	T1	303	5.0	303	5.0	0.431	31.1	LOS C	9.5	69.1	0.76	0.67	0.76	39.7
12	R2	320	5.0	320	5.0	0.946	77.3	LOS E	14.4	105.0	1.00	1.04	1.48	17.3
Appr	oach	641	5.0	641	5.0	0.946	54.3	LOS D	14.4	105.0	0.88	0.85	1.12	27.6
All V	ehicles	4259	5.0	4259	5.0	0.986	71.9	LOS E	30.5	222.8	0.91	1.04	1.24	22.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate		
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96		
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96		
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96		
All Pe	destrians	158	64.3	LOS F			0.96	0.96		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID08-Future Conditions (RMS).sip8

Site: 101 [FU PM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, C*, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E	F	F1
Phase Change Time (sec)	0	34	47	76	109	124
Green Time (sec)	28	7	23	27	9	10
Phase Time (sec)	34	13	29	33	15	16
Phase Split	24%	9%	21%	24%	11%	11%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Normal Movement

Site: 103 [FU PM Nelson/Smart]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	ement	Performa	ance	- Vehi	cles									
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of	Aver. Ba	ck of	Prop.	Effective	Aver. A	Averag
		Total	ΗV	Total	ΗV	Call	Delay		Vehicles D	istance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sma	rt Street												
1	L2	137	5.0	137	5.0	0.477	45.8	LOS D	3.8	28.0	0.96	0.79	0.96	20.1
2	T1	119	5.0	119	5.0	0.394	41.6	LOS D	3.3	23.9	0.94	0.75	0.94	21.2
3	R2	93	5.0	93	5.0	0.323	44.5	LOS D	2.5	18.4	0.93	0.76	0.93	20.4
Appro	bach	348	5.0	348	5.0	0.477	44.0	LOS D	3.8	28.0	0.94	0.77	0.94	20.6
East:	Nelso	n Street												
4	L2	74	5.0	74	5.0	0.342	21.7	LOS C	5.5	40.2	0.68	0.62	0.68	30.0
5	T1	516	5.0	516	5.0	0.342	18.4	LOS B	5.6	41.2	0.68	0.60	0.68	15.5
6	R2	196	5.0	196	5.0	0.462	28.4	LOS C	4.4	32.4	0.79	0.77	0.79	11.8
Appro	bach	785	5.0	785	5.0	0.462	21.2	LOS C	5.6	41.2	0.71	0.64	0.71	17.3
North	: Smar	t Street												
7	L2	83	5.0	83	5.0	0.232	40.1	LOS D	2.1	15.5	0.88	0.74	0.88	4.8
8	T1	101	5.0	101	5.0	0.465	38.7	LOS D	4.6	33.5	0.93	0.77	0.93	22.3
9	R2	69	5.0	69	5.0	0.465	42.1	LOS D	4.6	33.5	0.93	0.77	0.93	5.0
Appro	bach	254	5.0	254	5.0	0.465	40.1	LOS D	4.6	33.5	0.91	0.76	0.91	14.8
West	: Nelso	n Street												
10	L2	46	5.0	46	5.0	0.184	29.5	LOS C	4.1	30.0	0.92	0.77	0.92	12.9
11	T1	274	5.0	274	5.0	0.184	22.1	LOS C	4.1	30.0	0.82	0.68	0.82	14.5
12	R2	99	5.0	99	5.0	0.318	39.4	LOS D	2.8	20.7	0.98	0.82	0.98	24.0
Appro	bach	419	5.0	419	5.0	0.318	27.0	LOS C	4.1	30.0	0.87	0.72	0.87	18.7
All Ve	hicles	1806	5.0	1806	5.0	0.477	29.6	LOS C	5.6	41.2	0.82	0.70	0.82	18.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance -	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	k of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	destrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 103 [FU PM Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	48	0	26
Green Time (sec)	46	20	16
Phase Time (sec)	52	26	22
Phase Split	52%	26%	22%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

Site: 102 [FU PM Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Move	ement	Performa	ance	- Vehi	cles									
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	lack of	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles S	Speed km/h
East:	Nelso	n Street												
4	L2	34	5.0	34	5.0	0.325	9.9	LOS A	6.6	48.0	0.53	0.49	0.53	36.0
5	T1	701	5.0	701	5.0	0.325	7.1	LOS A	6.6	48.0	0.57	0.52	0.57	25.1
Appro	bach	735	5.0	735	5.0	0.325	7.2	LOS A	6.6	48.0	0.57	0.51	0.57	26.6
West	: Nelso	n Street												
11	T1	412	5.0	412	5.0	0.145	1.9	LOS A	1.1	8.1	0.13	0.11	0.13	29.8
12	R2	75	5.0	75	5.0	0.184	7.8	LOS A	0.4	3.1	0.19	0.55	0.19	34.6
Appro	bach	486	5.0	486	5.0	0.184	2.8	LOS A	1.1	8.1	0.14	0.18	0.14	32.6
All Ve	hicles	1221	5.0	1221	5.0	0.325	5.5	LOS A	6.6	48.0	0.40	0.38	0.40	28.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate			
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94			
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94			
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94			
All Pe	destrians	158	44.3	LOS E			0.94	0.94			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [FU PM Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	89	70
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Site: 101 [FU SAT Nelson/Station/Barbara]

♦ Network: N101 [Future SAT]

New Site

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles	Distance		Rate	Cycles S	Speed
0 11		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Barb	ara Street												
1	L2	179	5.0	179	5.0	0.902	54.4	LOS D	15.0	109.5	0.99	1.09	1.31	13.7
2	T1	255	5.0	255	5.0	0.902	51.0	LOS D	15.0	109.5	0.99	1.09	1.31	25.4
3	R2	181	5.0	181	5.0	0.298	20.8	LOS C	3.1	22.6	0.78	0.74	0.78	27.7
Appro	bach	615	5.0	615	5.0	0.902	43.1	LOS D	15.0	109.5	0.93	0.98	1.16	21.6
East:	Nelso	n Street												
4	L2	285	5.0	285	5.0	0.306	19.3	LOS B	5.5	39.9	0.69	0.73	0.69	29.2
5	T1	255	5.0	255	5.0	0.880	34.3	LOS C	7.0	51.0	0.93	0.85	1.03	10.1
6	R2	106	5.0	106	5.0	0.371	51.7	LOS D	3.2	23.5	1.00	0.79	1.00	20.0
Appro	bach	646	5.0	646	5.0	0.880	30.5	LOS C	7.0	51.0	0.83	0.79	0.88	21.8
North	: Statio	on Street												
7	L2	76	5.0	76	5.0	0.068	5.5	LOS A	0.5	3.3	0.29	0.52	0.29	35.8
8	T1	200	5.0	200	5.0	0.857	53.8	LOS D	6.6	48.3	1.00	1.06	1.34	25.2
9	R2	68	5.0	68	5.0	0.273	46.0	LOS D	1.9	13.8	0.93	0.75	0.93	20.9
Appro	bach	344	5.0	344	5.0	0.857	41.6	LOS D	6.6	48.3	0.83	0.88	1.03	25.6
West	: Nelso	n Street												
10	L2	76	5.0	76	5.0	0.628	44.8	LOS D	5.4	39.3	0.98	0.88	1.31	22.1
11	T1	287	5.0	287	5.0	0.628	42.4	LOS D	5.4	39.3	0.96	0.84	1.14	5.3
12	R2	198	5.0	198	5.0	0.914	64.8	LOS E	7.0	51.4	1.00	1.07	1.53	17.8
Appro	bach	561	5.0	561	5.0	0.914	50.6	LOS D	7.0	51.4	0.98	0.92	1.30	14.5
All Ve	ehicles	2166	5.0	2166	5.0	0.914	41.1	LOS D	15.0	109.5	0.90	0.89	1.09	20.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate			
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94			
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94			
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94			
All Pe	destrians	158	44.3	LOS E			0.94	0.94			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [FU SAT Nelson/Station/Barbara]

♦ Network: N101 [Future SAT]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F1
Phase Change Time (sec)	90	13	48	68
Green Time (sec)	17	29	14	16
Phase Time (sec)	23	35	20	22
Phase Split	23%	35%	20%	22%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 104 [FU SAT Nelson/Horsely/Court]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov	Turn	Demand F	Flows	Arrival	Flows	Deg. Satn	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver. /	Averag
		Total	ΗV	Total	ΗV	Jain	Delay	Service	Vehicles	Distance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Cour	t Road												
21	L2	136	5.0	136	5.0	0.862	59.4	LOS E	14.7	107.5	1.00	1.00	1.19	10.9
22	T1	274	5.0	274	5.0	0.862	55.1	LOS E	14.7	107.5	1.00	0.99	1.18	11.0
23b	R3	254	5.0	254	5.0	0.743	52.1	LOS D	9.8	71.8	0.98	0.88	1.04	25.4
Appro	bach	663	5.0	663	5.0	0.862	54.8	LOS D	14.7	107.5	0.99	0.95	1.13	17.5
South	nEast:	The Horsle	y Drive	е										
4b	L3	8	5.0	8	5.0	0.365	35.6	LOS D	6.4	46.6	0.77	0.77	0.77	31.8
4a	L1	239	5.0	239	5.0	0.365	33.5	LOS C	6.4	46.6	0.77	0.77	0.77	28.8
6a	R1	632	5.0	632	5.0	0.834	60.2	LOS E	11.9	87.1	1.00	0.94	1.17	20.4
Appro	bach	879	5.0	879	5.0	0.834	52.7	LOS D	11.9	87.1	0.94	0.89	1.06	22.3
North	: The I	Horsely Driv	ve											
27a	L1	843	5.0	843	5.0	0.472	26.0	LOS C	9.9	72.2	0.71	0.78	0.71	39.0
28	T1	155	5.0	155	5.0	0.384	44.4	LOS D	5.0	36.8	0.89	0.77	0.89	24.5
29	R2	169	5.0	169	5.0	0.384	47.7	LOS D	5.0	36.8	0.89	0.79	0.89	19.2
Appro	bach	1167	5.0	1167	5.0	0.472	31.6	LOS C	9.9	72.2	0.76	0.78	0.76	34.3
West	: Nelso	n Street												
30	L2	162	5.0	162	5.0	0.772	38.5	LOS D	5.5	40.2	1.00	0.92	1.17	9.6
32a	R1	226	5.0	226	5.0	0.772	55.1	LOS E	6.1	44.9	1.00	0.93	1.16	23.3
Appro	bach	388	5.0	388	5.0	0.772	48.2	LOS D	6.1	44.9	1.00	0.92	1.17	19.7
All Ve	hicles	3098	5.0	3098	5.0	0.862	44.6	LOS D	14.7	107.5	0.89	0.87	0.97	25.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians										
Mov	Description	Demand	Average	Level of A	Average Back	of Queue	Prop.	Effective Stop Bate		
שו	Decemption	ped/h	sec	Service	ped	m	Queueu			
P5	South Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95		
P71	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95		
P72	North Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95		
P8	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95		
All Pe	destrians	211	54.3	LOS E			0.95	0.95		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 104 [FU SAT Nelson/Horsely/Court]

♦ Network: N101 [Future SAT]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase C Input Phase Sequence: A, B*, C, D, E Output Phase Sequence: A, C, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E
Phase Change Time (sec)	89	0	20	55
Green Time (sec)	25	14	29	28
Phase Time (sec)	31	20	35	34
Phase Split	26%	17%	29%	28%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

V Site: 101 [FU SAT Smart Lane]

♦ Network: N101 [Future SAT]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Mov	Iovement Performance - Vehicles													
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Que	ack of ue	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	ΗV	Total	HV				Vehicles [Distance		Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	h: Sma	rt Street												
1	L2	209	5.0	209	5.0	0.288	3.7	LOS A	0.0	0.0	0.00	0.22	0.00	54.4
2	T1	323	5.0	323	5.0	0.288	0.0	LOS A	0.0	0.0	0.00	0.22	0.00	42.1
Appro	oach	533	5.0	533	5.0	0.288	1.5	NA	0.0	0.0	0.00	0.22	0.00	52.3
North	n: Smai	rt Street												
8	T1	303	5.0	303	5.0	0.408	2.8	LOS A	1.2	8.4	0.55	0.34	0.70	44.5
9	R2	203	5.0	203	5.0	0.408	9.3	LOS A	1.2	8.4	0.55	0.34	0.70	51.0
Appro	oach	506	5.0	506	5.0	0.408	5.4	NA	1.2	8.4	0.55	0.34	0.70	48.6
West	: Smar	t Lane												
10	L2	213	5.0	213	5.0	0.664	10.9	LOS B	1.9	13.6	0.61	0.99	1.22	41.0
12	R2	194	5.0	194	5.0	0.664	18.0	LOS C	1.9	13.6	0.61	0.99	1.22	41.0
Appro	oach	406	5.0	406	5.0	0.664	14.3	LOS B	1.9	13.6	0.61	0.99	1.22	41.0
All Ve	ehicles	1445	5.0	1445	5.0	0.664	6.5	NA	1.9	13.6	0.36	0.48	0.59	46.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: 101 [FU SAT Cunninghame/Horsley]

♦ Network: N101 [Future SAT]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	lovement Performance - Vehicles														
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bao Queu	ck of e	Prop. Queued	Effective Stop	Aver. No.	Averag e	
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Di veh	stance m		Rate	Cycles	Speed km/h	
South	n: The	Horsley Dri	ve (S))											
1	L2	62	0.0	62	0.0	0.543	5.6	LOS A	0.0	0.0	0.00	0.05	0.00	58.4	
2	T1	1380	5.0	1380	5.0	0.543	0.1	LOS A	0.0	0.0	0.00	0.02	0.00	59.1	
Appro	bach	1442	4.8	1442	4.8	0.543	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.1	
North	: The ł	Horsley Driv	ve (N)												
8	T1	1521	5.0	1521	5.0	0.403	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9	
Appro	bach	1521	5.0	1521	5.0	0.403	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9	
West	Cunn	inghame St	treet												
10	L2	211	0.0	211	0.0	0.316	13.3	LOS B	0.4	2.8	0.67	0.89	0.77	23.3	
Appro	bach	211	0.0	211	0.0	0.316	13.3	LOS B	0.4	2.8	0.67	0.89	0.77	23.3	
All Ve	hicles	3174	4.6	3174	4.6	0.543	1.0	NA	0.4	2.8	0.04	0.07	0.05	55.9	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [FU SAT Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg.	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver.	Averag
שו		Total	НV	Total	НV	Saur	Delay	Service	Vehicles	ue Distance	Queueu	Siop Rate	Cvcles S	e Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			0,000	km/h
South	n: The I	Horsley Dri	ive (S))										
1	L2	389	5.0	389	5.0	0.287	11.5	LOS B	5.2	38.1	0.39	0.67	0.39	45.2
2	T1	753	5.0	753	5.0	0.630	43.3	LOS D	13.3	97.3	0.91	0.79	0.91	28.2
3	R2	299	5.0	299	5.0	0.847	71.6	LOS E	13.2	96.6	1.00	0.92	1.17	20.6
Appro	bach	1441	5.0	1441	5.0	0.847	40.6	LOS D	13.3	97.3	0.79	0.79	0.82	28.9
East:	Poldin	g Street (E)											
4	L2	312	5.0	312	5.0	0.368	19.8	LOS B	6.4	46.5	0.60	0.74	0.60	36.8
5	T1	346	5.0	346	5.0	0.830	68.8	LOS E	10.0	72.7	0.99	0.93	1.21	28.2
6	R2	17	5.0	17	5.0	0.830	74.9	LOS E	10.0	72.7	1.00	0.95	1.18	27.7
Appro	bach	675	5.0	675	5.0	0.830	46.3	LOS D	10.0	72.7	0.81	0.84	0.93	30.4
North	: The H	lorsley Dri	ve (N)											
7	L2	38	5.0	38	5.0	0.858	65.4	LOS E	18.8	137.1	1.00	0.98	1.13	29.7
8	T1	743	5.0	743	5.0	0.858	59.4	LOS E	18.8	137.1	0.98	0.97	1.13	20.6
9	R2	172	5.0	172	5.0	0.648	67.3	LOS E	6.9	50.5	0.99	0.82	1.00	28.0
Appro	bach	953	5.0	953	5.0	0.858	61.0	LOS E	18.8	137.1	0.98	0.94	1.11	22.8
West	: Poldir	ng Street (N	N)											
10	L2	31	5.0	31	5.0	0.425	37.2	LOS D	9.4	68.3	0.77	0.68	0.77	38.6
11	T1	285	5.0	285	5.0	0.425	31.6	LOS C	9.4	68.3	0.77	0.68	0.77	39.4
12	R2	317	5.0	317	5.0	0.720	41.8	LOS D	9.9	72.1	0.97	0.85	0.98	25.7
Appro	bach	633	5.0	633	5.0	0.720	37.0	LOS D	9.9	72.1	0.87	0.76	0.87	33.3
All Ve	ehicles	3701	5.0	3701	5.0	0.858	46.3	LOS D	18.8	137.1	0.86	0.83	0.92	28.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacł Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96					
All Pe	destrians	158	64.3	LOS F			0.96	0.96					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101 [FU SAT Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	44	79	106	133
Green Time (sec)	38	29	21	21	1
Phase Time (sec)	44	35	27	27	7
Phase Split	31%	25%	19%	19%	5%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 103 [FU SAT Nelson/Smart]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Movement Performance - Vehicles														
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg. Sata	Average	Level of	Aver. Ba	ick of	Prop.	Effective	Aver.	Averag
U		Total	ΗV	Total	ΗV	Jaur	Delay	Service	Vehicles E)istance	Queueu	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			,	ˈkm/h
South	n: Sma	rt Street												
1	L2	144	5.0	144	5.0	0.423	42.7	LOS D	3.9	28.4	0.93	0.78	0.93	20.8
2	T1	55	5.0	55	5.0	0.187	37.1	LOS D	1.7	12.4	0.88	0.69	0.88	22.1
3	R2	76	5.0	76	5.0	0.187	40.6	LOS D	1.7	12.4	0.88	0.72	0.88	21.5
Appro	bach	275	5.0	275	5.0	0.423	41.0	LOS D	3.9	28.4	0.90	0.75	0.90	21.3
East:	Nelso	n Street												
4	L2	113	5.0	113	5.0	0.286	23.0	LOS C	4.3	31.6	0.69	0.65	0.69	29.2
5	T1	346	5.0	346	5.0	0.286	19.7	LOS B	4.5	32.7	0.69	0.61	0.69	14.8
6	R2	77	5.0	77	5.0	0.179	25.9	LOS C	1.5	11.3	0.70	0.70	0.70	12.6
Appro	bach	536	5.0	536	5.0	0.286	21.3	LOS C	4.5	32.7	0.69	0.63	0.69	20.1
North	: Smar	t Street												
7	L2	104	5.0	104	5.0	0.291	40.6	LOS D	2.7	19.7	0.89	0.76	0.89	4.7
8	T1	83	5.0	83	5.0	0.434	38.5	LOS D	4.3	31.2	0.92	0.77	0.92	22.3
9	R2	77	5.0	77	5.0	0.434	41.8	LOS D	4.3	31.2	0.92	0.77	0.92	5.0
Appro	bach	264	5.0	264	5.0	0.434	40.3	LOS D	4.3	31.2	0.91	0.76	0.91	13.2
West	: Nelso	n Street												
10	L2	44	5.0	44	5.0	0.171	24.5	LOS C	3.1	22.3	0.78	0.67	0.78	14.6
11	T1	234	5.0	234	5.0	0.171	22.3	LOS C	3.2	23.7	0.82	0.68	0.82	14.4
12	R2	145	5.0	145	5.0	0.422	35.2	LOS D	3.9	28.7	0.93	0.81	0.93	25.1
Appro	bach	423	5.0	423	5.0	0.422	27.0	LOS C	3.9	28.7	0.85	0.73	0.85	20.6
All Ve	hicles	1498	5.0	1498	5.0	0.434	29.9	LOS C	4.5	32.7	0.81	0.70	0.81	19.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Bacl Pedestrian ped	k of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94					
All Pe	destrians	211	44.3	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 103 [FU SAT Nelson/Smart]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B*, C*, D, E, F1* Output Phase Sequence: A, D, E (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E
Phase Change Time (sec)	51	0	26
Green Time (sec)	43	20	19
Phase Time (sec)	49	26	25
Phase Split	49%	26%	25%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

Site: 102 [FU SAT Nelson/Ware]

New Site Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of eue	Prop. Queued	Effective Stop	Aver No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles	Distance		Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East: Nelson Street														
4	L2	167	5.0	167	5.0	0.392	9.7	LOS A	6.3	45.7	0.52	0.55	0.52	35.5
5	T1	552	5.0	552	5.0	0.392	7.4	LOS A	6.3	45.7	0.58	0.56	0.58	24.2
Appro	bach	719	5.0	719	5.0	0.392	7.9	LOS A	6.3	45.7	0.57	0.56	0.57	29.8
West	: Nelso	n Street												
11	T1	625	5.0	625	5.0	0.221	3.0	LOS A	2.1	15.7	0.22	0.19	0.22	25.8
12	R2	121	5.0	121	5.0	0.306	9.4	LOS A	0.9	6.5	0.26	0.57	0.26	33.7
Appro	bach	746	5.0	746	5.0	0.306	4.1	LOS A	2.1	15.7	0.23	0.25	0.23	30.3
All Ve	hicles	1465	5.0	1465	5.0	0.392	6.0	LOS A	6.3	45.7	0.39	0.40	0.39	30.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of <i>I</i> Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate						
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94						
All Pe	destrians	158	44.3	LOS E			0.94	0.94						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 102 [FU SAT Nelson/Ware]

New Site Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B*, C Output Phase Sequence: A, C (* Variable Phase)

Phase Timing Summary

Phase	Α	С
Phase Change Time (sec)	79	60
Green Time (sec)	75	14
Phase Time (sec)	80	20
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

Modified Intersections SIDRA ASSESSMENT : Appendix E

SITE LAYOUT

V Site: 101 [FU AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

V Site: 101 [FU AM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	Novement Performance - Vehicles														
Mov ID	Turn	Demand F	-lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bao Queue	ck of e	Prop. Queued	Effective Stop	Aver. No.	Averag e	
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Di veh	stance m		Rate	Cycles	Speed km/h	
South	n: The I	Horsley Dri	ve (S))											
1	L2	54	0.0	54	0.0	0.714	5.7	LOS A	0.0	0.0	0.00	0.04	0.00	58.3	
2	T1	1493	5.0	1493	5.0	0.714	0.3	LOS A	0.0	0.0	0.00	0.02	0.00	58.8	
Appro	bach	1546	4.8	1546	4.8	0.714	0.5	NA	0.0	0.0	0.00	0.02	0.00	58.8	
North	: The H	Horsley Driv	ve (N)												
8	T1	1748	5.0	1748	5.0	0.463	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9	
Appro	bach	1748	5.0	1748	5.0	0.463	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9	
West	Cunn	inghame St	treet												
10	L2	211	0.0	211	0.0	0.433	16.0	LOS C	0.5	3.5	0.69	0.94	0.91	20.7	
Appro	bach	211	0.0	211	0.0	0.433	16.0	LOS C	0.5	3.5	0.69	0.94	0.91	20.7	
All Ve	hicles	3505	4.6	3505	4.6	0.714	1.2	NA	0.5	3.5	0.04	0.07	0.05	55.4	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: 101 [FU AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 101 [FU AM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total	HV	Total	ΗV				Vehicles I	Distance		Rate	Cycles S	Speed
Sout	a Tha	veh/h	% ive (S)	veh/h	%	V/C	sec		veh	m				km/h
Sout	n. The		ive (S))	0.0	0 407	0.0		0.0	40.5	0.00	0.00	0.00	47.0
1	LZ	292	0.0	292	0.0	0.187	9.0	LUSA	2.8	19.5	0.28	0.63	0.28	47.8
2	11	894	5.0	894	5.0	0.647	38.8	LOS D	15.3	112.0	0.89	0.78	0.89	29.8
3	R2	300	0.0	300	0.0	0.884	77.2	LOS E	13.9	97.2	1.00	0.95	1.24	19.6
Appr	oach	1485	3.0	1485	3.0	0.884	40.7	LOS D	15.3	112.0	0.79	0.79	0.84	29.0
East	Poldin	g Street (E	E)											
4	L2	332	0.0	332	0.0	0.424	26.2	LOS C	8.3	58.1	0.69	0.76	0.69	32.7
5	T1	325	0.0	325	0.0	0.897	79.3	LOS E	9.3	65.1	1.00	1.01	1.38	26.2
Appr	oach	657	0.0	657	0.0	0.897	52.5	LOS D	9.3	65.1	0.84	0.88	1.03	28.1
North	n: The H	lorsley Dri	ive (N)											
7	L2	35	0.0	35	0.0	0.871	68.5	LOS E	18.5	134.9	1.00	1.00	1.16	29.1
8	T1	773	5.0	773	5.0	0.871	62.8	LOS E	18.5	134.9	1.00	1.00	1.17	19.9
9	R2	83	0.0	83	0.0	0.637	77.5	LOS E	3.6	25.1	1.00	0.80	1.06	26.0
Appr	oach	891	4.3	891	4.3	0.871	64.4	LOS E	18.5	134.9	1.00	0.98	1.16	21.1
West	: Poldir	ng Street (W)											
10	L2	18	0.0	18	0.0	0.621	38.0	LOS D	16.3	114.2	0.83	0.75	0.83	38.5
11	T1	493	0.0	493	0.0	0.621	32.5	LOS C	16.3	114.2	0.83	0.75	0.83	39.2
12	R2	465	0.0	465	0.0	0.855	53.8	LOS D	18.0	125.7	1.00	0.94	1.17	22.1
Appr	oach	976	0.0	976	0.0	0.855	42.7	LOS D	18.0	125.7	0.91	0.84	0.99	31.4
All Ve	ehicles	4008	2.1	4008	2.1	0.897	48.4	LOS D	18.5	134.9	0.88	0.86	0.98	27.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate						
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
All Pe	destrians	158	64.3	LOS F			0.96	0.96						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID09-Future Modifications (RMS).sip8

PHASING SUMMARY

Site: 101 [FU AM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn - Copy Reference Phase: Phase A Input Phase Sequence: A, D, E, F, F1* Output Phase Sequence: A, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F	F1
Phase Change Time (sec)	0	42	86	108	124
Green Time (sec)	36	38	16	10	10
Phase Time (sec)	42	44	22	16	16
Phase Split	30%	31%	16%	11%	11%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SITE LAYOUT

Site: 101 [FU AM Sackville/Station]

New Site Site Category: (None) Signals - Fixed Time Isolated

Site: 101 [FU AM Sackville/Station]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 92 seconds (Minimum Cycle Time)

Move	Movement Performance - Vehicles											
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Statio	n Street										
4	L2	45	5.0	0.767	47.9	LOS D	8.8	63.9	1.00	0.94	1.36	30.9
5	T1	151	5.0	0.767	43.3	LOS D	8.8	63.9	1.00	0.94	1.36	31.1
6	R2	43	5.0	0.184	44.3	LOS D	1.8	13.0	0.93	0.73	0.93	30.9
Appro	bach	239	5.0	0.767	44.3	LOS D	8.8	63.9	0.99	0.90	1.28	31.0
East:	Sackvill	e Street										
7	L2	40	5.0	0.781	41.6	LOS D	12.0	87.9	1.00	1.02	1.37	32.8
8	T1	261	5.0	0.781	37.0	LOS D	12.0	87.9	1.00	1.02	1.37	33.0
9	R2	11	5.0	0.044	27.1	LOS C	0.3	2.1	0.91	0.65	0.91	36.1
Appro	bach	312	5.0	0.781	37.3	LOS D	12.0	87.9	1.00	1.01	1.36	33.1
North	: Statior	n Street										
10	L2	12	5.0	0.722	44.7	LOS D	11.3	82.7	0.99	0.89	1.08	32.0
11	T1	329	5.0	0.722	40.3	LOS D	11.3	82.7	0.99	0.89	1.08	32.0
12	R2	156	5.0	0.722	45.4	LOS D	11.0	80.1	1.00	0.88	1.09	31.0
Appro	bach	497	5.0	0.722	42.0	LOS D	11.3	82.7	1.00	0.89	1.08	31.7
West:	Sackvil	le Street										
1	L2	128	5.0	0.869	43.3	LOS D	25.8	188.1	0.97	1.03	1.36	32.2
2	T1	416	5.0	0.869	38.6	LOS D	25.8	188.1	0.97	1.03	1.36	32.4
3	R2	95	5.0	0.207	33.2	LOS C	3.5	25.3	0.82	0.73	0.82	34.1
Appro	bach	639	5.0	0.869	38.8	LOS D	25.8	188.1	0.94	0.99	1.28	32.6
All Ve	hicles	1686	5.0	0.869	40.2	LOS D	25.8	188.1	0.97	0.95	1.24	32.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov		Demand	Average	Level of <i>i</i>	Average Back	of Queue	Prop.	Effective						
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate						
		ped/h	sec		ped	m								
P2	South Full Crossing	53	18.0	LOS B	0.1	0.1	0.87	0.87						
P3	East Full Crossing	53	39.4	LOS D	0.1	0.1	0.94	0.94						
P4	North Full Crossing	53	39.4	LOS D	0.1	0.1	0.94	0.94						
P1	West Full Crossing	53	39.4	LOS D	0.1	0.1	0.94	0.94						
All Pe	destrians	211	34.0	LOS D			0.92	0.92						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101 [FU AM Sackville/Station]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 92 seconds (Minimum Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing	Summary
--------------	---------

Phase	Α	В	С	D	E
Phase Change Time (sec)	40	56	78	0	21
Green Time (sec)	11	18	8	17	13
Phase Time (sec)	15	24	12	23	18
Phase Split	16%	26%	13%	25%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

V Site: 101 [FU PM Cunninghame/Horsley]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand I	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Quei	ack of Je	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles E veh	Distance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	49	0.0	49	0.0	0.471	5.6	LOS A	5.5	40.4	0.00	0.03	0.00	59.0
2	T1	1728	5.0	1728	5.0	0.471	0.1	LOS A	7.1	51.6	0.00	0.02	0.00	59.4
Appro	bach	1778	4.9	1778	4.9	0.471	0.2	NA	7.1	51.6	0.00	0.02	0.00	59.4
North	: The H	Horsley Driv	ve (N)											
8	T1	1681	5.0	1681	5.0	0.445	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1681	5.0	1681	5.0	0.445	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame S [.]	treet											
10	L2	168	0.0	168	0.0	0.488	20.4	LOS C	0.5	3.4	0.74	0.97	1.01	17.6
Appro	bach	168	0.0	168	0.0	0.488	20.4	LOS C	0.5	3.4	0.74	0.97	1.01	17.6
All Ve	hicles	3627	4.7	3627	4.7	0.488	1.1	NA	7.1	51.6	0.03	0.05	0.05	56.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [FU PM Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	ovement Performance - Vehicles													
Mov ID	Turn	Demand I	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B Que	ack of ue	Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total	HV	Total	HV				Vehicles I	Distance		Rate	Cycles S	Speed
Sout	a Tha	veh/h Hereley/Dri	% ve (S)	veh/h	%	V/C	sec		veh	m				km/h
Jour			ve (3)	440	0.0	0.050	40.0		0.0	E7 4	0.54	0.74	0.54	44 5
		442	0.0	44Z	0.0	0.353	10.2	LOSB	8.2	57.1	0.51	0.71	0.51	41.5
2	11	937	5.0	937	5.0	0.945	75.8	LOSE	16.4	120.0	0.99	1.13	1.32	20.2
3	R2	305	0.0	305	0.0	0.935	88.5	LOS F	15.3	107.4	1.00	1.01	1.37	17.9
Appr	oach	1684	2.8	1684	2.8	0.945	62.4	LOS E	16.4	120.0	0.87	1.00	1.12	22.7
East:	Poldin	g Street (E)											
4	L2	206	0.0	206	0.0	0.237	23.5	LOS C	4.5	31.8	0.61	0.72	0.61	34.3
5	T1	565	0.0	565	0.0	0.930	80.3	LOS F	17.1	119.6	0.99	1.08	1.36	26.0
Appr	oach	772	0.0	772	0.0	0.930	65.1	LOS E	17.1	119.6	0.89	0.98	1.16	27.0
North	n: The I	lorsley Driv	ve (N)											
7	L2	21	0.0	21	0.0	0.908	70.6	LOS E	24.3	177.3	1.00	1.04	1.20	28.6
8	T1	944	5.0	944	5.0	0.908	64.9	LOS E	24.3	177.3	0.99	1.04	1.21	19.5
9	R2	197	0.0	197	0.0	0.603	63.2	LOS E	7.7	53.8	0.97	0.82	0.97	29.0
Appr	oach	1162	4.1	1162	4.1	0.908	64.7	LOS E	24.3	177.3	0.99	1.01	1.17	21.7
West	: Poldir	ng Street (V	V)											
10	L2	18	0.0	18	0.0	0.434	38.6	LOS D	9.7	68.0	0.78	0.68	0.78	38.2
11	T1	303	0.0	303	0.0	0.434	33.0	LOS C	9.7	68.0	0.78	0.68	0.78	38.9
12	R2	320	0.0	320	0.0	0.979	89.0	LOS F	15.4	108.0	1.00	1.08	1.57	15.6
Appr	oach	641	0.0	641	0.0	0.979	61.1	LOS E	15.4	108.0	0.89	0.88	1.18	25.9
All Ve	ehicles	4259	2.2	4259	2.2	0.979	63.3	LOS E	24.3	177.3	0.91	0.98	1.15	23.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate						
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96						
All Pe	destrians	158	64.3	LOS F			0.96	0.96						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID09-Future Modifications (RMS).sip8

PHASING SUMMARY

Site: 101 [FU PM Horsley/Polding]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, D, E, F (* Variable Phase)

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	0	49	76	109
Green Time (sec)	43	21	27	25
Phase Time (sec)	49	27	33	31
Phase Split	35%	19%	24%	22%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 101 [FU PM Sackville/Station]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 93 seconds (Site User-Given Phase Times)

Move	ement	Performanc	e - Ve	hicles								
Mov	Turn	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed km/h
South	: Statio	n Street	70	V/C	360		Ven		_			KI11/11
4	L2	117	5.0	0.937	63.1	LOS E	22.0	160.5	1.00	1.22	1.68	27.3
5	T1	269	5.0	0.937	58.5	LOS E	22.0	160.5	1.00	1.22	1.68	27.5
6	R2	42	5.0	0.110	36.5	LOS D	1.6	11.3	0.84	0.72	0.84	33.0
Appro	bach	428	5.0	0.937	57.6	LOS E	22.0	160.5	0.98	1.17	1.60	27.9
East:	Sackvill	e Street										
7	L2	33	5.0	0.921	50.8	LOS D	24.0	174.9	1.00	1.18	1.50	30.3
8	T1	460	5.0	0.921	46.2	LOS D	24.0	174.9	1.00	1.18	1.50	30.6
9	R2	21	5.0	0.054	26.4	LOS C	0.6	4.6	0.83	0.67	0.83	36.4
Appro	bach	514	5.0	0.921	45.7	LOS D	24.0	174.9	0.99	1.16	1.47	30.7
North	: Statior	n Street										
10	L2	11	5.0	0.932	66.8	LOS E	11.9	86.9	1.00	1.16	1.60	26.8
11	T1	201	5.0	0.932	62.2	LOS E	11.9	86.9	1.00	1.16	1.60	27.0
12	R2	192	5.0	0.932	66.8	LOS E	11.2	81.6	1.00	1.10	1.61	26.0
Appro	bach	403	5.0	0.932	64.5	LOS E	11.9	86.9	1.00	1.13	1.61	26.5
West	Sackvil	le Street										
1	L2	156	5.0	0.828	44.8	LOS D	17.9	130.9	1.00	1.03	1.44	31.5
2	T1	240	5.0	0.828	40.2	LOS D	17.9	130.9	1.00	1.03	1.44	31.8
3	R2	83	5.0	0.350	44.5	LOS D	3.6	26.5	0.95	0.74	0.95	30.8
Appro	bach	479	5.0	0.828	42.5	LOS D	17.9	130.9	0.99	0.98	1.35	31.5
All Ve	hicles	1824	5.0	0.937	51.8	LOS D	24.0	174.9	0.99	1.11	1.50	29.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians												
Mov		Demand	Average	Level of <i>i</i>	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m						
P2	South Full Crossing	53	19.4	LOS B	0.1	0.1	0.87	0.87				
P3	East Full Crossing	53	40.8	LOS E	0.1	0.1	0.94	0.94				
P4	North Full Crossing	53	40.8	LOS E	0.1	0.1	0.94	0.94				
P1	West Full Crossing	53	40.8	LOS E	0.1	0.1	0.94	0.94				
All Pe	destrians	211	35.4	LOS D			0.92	0.92				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101 [FU PM Sackville/Station]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 93 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing	Summary
--------------	---------

Phase	Α	В	С	D	E
Phase Change Time (sec)	42	59	71	0	17
Green Time (sec)	11	8	16	11	20
Phase Time (sec)	15	14	22	16	26
Phase Split	16%	15%	24%	17%	28%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

V Site: 101 [FU SAT Cunninghame/Horsley]

♦ Network: N101 [Future SAT]

New Site Site Category: (None) Giveway / Yield (Two-Way)

Movement Performance - Vehicles														
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bac Queue	k of ∋	Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Di veh	stance m		Rate	Cycles	Speed km/h
South	n: The I	Horsley Dri	ve (S))										
1	L2	62	0.0	62	0.0	0.584	5.6	LOS A	0.0	0.0	0.00	0.05	0.00	58.4
2	T1	1380	5.0	1380	5.0	0.584	0.1	LOS A	0.0	0.0	0.00	0.02	0.00	59.0
Appro	bach	1442	4.8	1442	4.8	0.584	0.4	NA	0.0	0.0	0.00	0.03	0.00	59.0
North	: The H	lorsley Driv	ve (N)											
8	T1	1521	5.0	1521	5.0	0.403	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1521	5.0	1521	5.0	0.403	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Cunn	inghame St	treet											
10	L2	211	0.0	211	0.0	0.341	13.5	LOS B	0.4	2.9	0.67	0.90	0.80	23.0
Appro	bach	211	0.0	211	0.0	0.341	13.5	LOS B	0.4	2.9	0.67	0.90	0.80	23.0
All Ve	hicles	3174	4.6	3174	4.6	0.584	1.1	NA	0.4	2.9	0.04	0.07	0.05	55.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [FU SAT Horsley/Polding]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Mov	Movement Performance - Vehicles													
Mov	Turn	Demand I	Flows	Arrival	Flows	Deg.	Average	Level of	Aver. B	ack of	Prop.	Effective	Aver.	Averag
שו		Total	ΗV	Total	НV	Sain	Delay	Service	Vehicles	eue Distance	Queuea	Stop Rate	Cvcles	e Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		, tato	0,000	km/h
South	n: The	Horsley Dri	ve (S))										
1	L2	389	5.0	389	5.0	0.287	11.4	LOS B	4.9	36.0	0.39	0.67	0.39	45.3
2	T1	753	5.0	753	5.0	0.708	48.1	LOS D	14.1	102.9	0.96	0.83	0.96	26.6
3	R2	299	5.0	299	5.0	0.847	71.6	LOS E	13.2	96.6	1.00	0.92	1.17	20.6
Appro	bach	1441	5.0	1441	5.0	0.847	43.1	LOS D	14.1	102.9	0.81	0.81	0.85	28.1
East:	Poldin	g Street (E)											
4	L2	312	5.0	312	5.0	0.363	18.8	LOS B	6.2	44.9	0.58	0.73	0.58	37.6
5	T1	346	5.0	346	5.0	0.835	69.2	LOS E	10.0	73.4	0.99	0.94	1.21	28.1
6	R2	17	5.0	17	5.0	0.835	75.3	LOS E	10.0	73.4	1.00	0.95	1.19	27.6
Appro	bach	675	5.0	675	5.0	0.835	46.1	LOS D	10.0	73.4	0.80	0.84	0.92	30.5
North	: The I	Horsley Driv	ve (N)											
7	L2	38	5.0	38	5.0	0.846	64.7	LOS E	17.8	129.8	1.00	0.96	1.12	29.9
8	T1	743	5.0	743	5.0	0.846	58.7	LOS E	17.8	129.8	0.99	0.96	1.12	20.7
9	R2	172	5.0	172	5.0	0.716	40.8	LOS D	4.3	31.1	1.00	0.83	1.07	35.2
Appro	bach	953	5.0	953	5.0	0.846	55.7	LOS E	17.8	129.8	0.99	0.94	1.11	24.1
West	: Poldir	ng Street (V	N)											
10	L2	31	5.0	31	5.0	0.416	35.8	LOS D	9.2	66.8	0.75	0.67	0.75	39.1
11	T1	285	5.0	285	5.0	0.416	30.2	LOS C	9.2	66.8	0.75	0.67	0.75	40.0
12	R2	317	5.0	317	5.0	0.701	40.6	LOS D	9.7	70.7	0.96	0.84	0.96	26.1
Appro	bach	633	5.0	633	5.0	0.701	35.7	LOS D	9.7	70.7	0.86	0.75	0.86	33.9
All Ve	hicles	3701	5.0	3701	5.0	0.847	45.6	LOS D	17.8	129.8	0.86	0.84	0.93	28.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
All Pe	destrians	158	64.3	LOS F			0.96	0.96				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.
SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Processed: Wednesday, 14 April 2021 4:40:26 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID09-Future Modifications (RMS).sip8

PHASING SUMMARY

Site: 101 [FU SAT Horsley/Polding]

♦ Network: N101 [Future SAT]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, E, F, F1*, F2* Output Phase Sequence: A, C*, D, E, F, F1* (* Variable Phase)

Phase Timing Summary

Phase	Α	С	D	E	F	F1
Phase Change Time (sec)	0	29	43	79	106	123
Green Time (sec)	23	8	30	21	11	11
Phase Time (sec)	29	14	36	27	17	17
Phase Split	21%	10%	26%	19%	12%	12%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Processed: Wednesday, 14 April 2021 4:40:26 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID09-Future Modifications (RMS).sip8

MOVEMENT SUMMARY

Site: 101 [FU SAT Sackville/Station]

New Site Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 92 seconds (Minimum Cycle Time)

Move	Movement Performance - Vehicles											
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Statior	n Street										
4	L2	151	5.0	0.928	60.1	LOS E	23.1	169.0	1.00	1.20	1.65	27.9
5	T1	267	5.0	0.928	55.5	LOS E	23.1	169.0	1.00	1.20	1.65	28.1
6	R2	46	5.0	0.112	35.2	LOS D	1.7	12.1	0.83	0.72	0.83	33.5
Appro	bach	464	5.0	0.928	54.9	LOS D	23.1	169.0	0.98	1.15	1.57	28.5
East:	Sackvill	e Street										
7	L2	86	5.0	0.899	46.1	LOS D	14.0	102.2	1.00	1.12	1.53	31.4
8	T1	255	5.0	0.899	41.5	LOS D	14.0	102.2	1.00	1.12	1.53	31.6
9	R2	22	5.0	0.084	31.2	LOS C	0.7	5.3	0.90	0.68	0.90	34.7
Appro	bach	363	5.0	0.899	42.0	LOS D	14.0	102.2	0.99	1.09	1.49	31.7
North	: Station	Street										
10	L2	9	5.0	0.752	46.6	LOS D	11.5	84.1	1.00	0.92	1.12	31.5
11	T1	363	5.0	0.752	42.2	LOS D	11.5	84.1	1.00	0.92	1.12	31.5
12	R2	121	5.0	0.752	47.2	LOS D	11.2	82.0	1.00	0.91	1.12	30.7
Appro	bach	494	5.0	0.752	43.5	LOS D	11.5	84.1	1.00	0.91	1.12	31.3
West:	Sackvil	le Street										
1	L2	141	5.0	0.862	47.8	LOS D	19.5	142.6	1.00	1.06	1.42	30.8
2	T1	264	5.0	0.862	43.2	LOS D	19.5	142.6	1.00	1.06	1.42	31.0
3	R2	140	5.0	0.587	47.9	LOS D	6.2	45.0	0.99	0.89	1.30	30.0
Appro	bach	545	5.0	0.862	45.6	LOS D	19.5	142.6	1.00	1.02	1.39	30.7
All Ve	hicles	1866	5.0	0.928	46.7	LOS D	23.1	169.0	0.99	1.04	1.38	30.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
Mov		Demand	Average	Level of <i>i</i>	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		
P2	South Full Crossing	53	20.1	LOS C	0.1	0.1	0.87	0.87
P3	East Full Crossing	53	38.4	LOS D	0.1	0.1	0.94	0.94
P4	North Full Crossing	53	38.4	LOS D	0.1	0.1	0.94	0.94
P1	West Full Crossing	53	38.4	LOS D	0.1	0.1	0.94	0.94
All Pe	destrians	211	33.8	LOS D			0.92	0.92

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Processed: Wednesday, 14 April 2021 4:30:57 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID09-Future Modifications (RMS).sip8

PHASING SUMMARY

Site: 101 [FU PM Sackville/Station]

New Site Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 93 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Variable Phasing Reference Phase: Phase D Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing	Summary
--------------	---------

Phase	Α	В	С	D	E
Phase Change Time (sec)	42	59	71	0	17
Green Time (sec)	11	8	16	11	20
Phase Time (sec)	15	14	22	16	26
Phase Split	16%	15%	24%	17%	28%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RATIO CONSULTANTS PTY LTD | Processed: Wednesday, 14 April 2021 4:28:08 PM Project: Y:\15501-16000\15881T - Fairfield Forum\Work\SIDRA\15881T-SID09-Future Modifications (RMS).sip8 Appendix F Concept Intersection Plans :

NCE	SHEET No.	PREPARED BY	SCALE	DATE	
-A	1 of 3	P.M.	1:500@A3	30/03/2021	

WIDENING OF INTERSECTION TO CATER FOR DOUBLE DIAMOND PHASING REQUIRES ACQUISITION OF PRIVATE PROPERTY STATION STREET

WIDENING OF INTERSECTION TO CATER FOR DOUBLE DIAMOND PHASING REQUIRES ACQUISITION OF PRIVATE PROPERTY

SACANILE STREETLE

WIDENING OF INTERSECTION TO CATER FOR -DOUBLE DIAMOND PHASING REQUIRES RELOCATION OF SIGNAL CONTROLLER

SACKULLE STREETLE

WIDENING OF INTERSECTION TO CATER FOR -DOUBLE DIAMOND PHASING REQUIRES ACQUISITION OF PRIVATE PROPERTY

CONCEPT PLAN FOR DISCUSSION PURPOSES ONLY

-	10 000	4		
HRV - Heavy Rigi	d Vehicle (AS/NZS2	2890.2:2002)		
ŀ	12.5		VEHICLE ENVELOPE (F	ORWARD)
I			500mm CLEARANCE (FORW	ARD)
			VEHICLE ENVELOPE (REVERSE)
			500mm CLEARANCE (REVE	RSE)
		Overall L Overall Wi Track Wit	ength /idth dth ock Time	1 2 2 6
► + 50	+ 14	Curb to C	Curb Turning Radius	1

NOTE: 1) Base aerial photography and cadastral boundary information. FOR DISCUSSION PURPOSES ONLY 2) Maximum Design Speed 15km/h

NCE	SHEET No.	PREPARED BY	SCALE	DATE	
-A	2 of 3	P.M.	1:500@A3	30/03/2021	

INCREASE EFFECTIVE STORAGE LENGTH OF -RIGHT TURN LANE I.E. MINIMUM WIDTH 2M-TO STORE A VEHICLE

POLDING STREET **CONCEPT PLAN**

CONSTRUCT CENTRAL ISLANDS TO RESTRICT CUNNINGHAME INTERSECTION TO LEFT IN/LEFT OUT ONLY

125.0

ratio: RATIO CONSULTANTS PTY LTD ABN 005 422 104 8 GWYNNE STREET CREMORNE, VICTORIA 312 TELEPHONE (03)9429 3111

FACSIMILE (03)9429 3011

FOR DISCUSSION PURPOSES ONLY

MRV - Medium Rigid Vehicle (AS/NZS2890.2:2002

0.00

Fairfield Forum Station Street, Fairfield, NSW Polding Street/The Horsley Drive Modifications Concept Plan

NOTE: 1) Base aerial photography and cadastral boundary information. FOR DISCUSSION PURPOSES ONLY 2) Maximum Design Speed 15km/h

NCE	SHEET No.		No.	PREPARED BY	SCALE	DATE	
-A	3	of	3	P.M.	1:500@A3	30/03/2021	